Solution of Liouville’s Equation for Uncertainty Characterization of the Main Problem in Satellite Theory  

在线阅读下载全文

作  者:Ryan Weisman Manoranjan Majji Kyle T.Alfriend 

机构地区:[1]Research Aerospace Engineer,Air Force Research Laboratory,AFRL/RVSV 3550 Aberdeen Ave.SE,Kirtland AFB,87117 [2]Assistant Professor,Mechanical and Aerospace Engineering Department,University at Buffalo,318 Jarvis Hall,Buffalo,NY,14260 [3]TEES Research Professor,Aerospace Engineering Department,Texas A&M University,College Station,TX,77843-3141

出  处:《Computer Modeling in Engineering & Sciences》2016年第3期269-304,共36页工程与科学中的计算机建模(英文)

摘  要:This paper presents a closed form solution to Liouville’s equation governing the evolution of the probability density function associated with the motion of a body in a central force field and subject to J2.It is shown that the application of transformation of variables formula for mapping uncertainties is equivalent to the method of characteristics for computing the time evolution of the probability density function that forms the solution of the Liouville’s partial differential equation.The insights derived from the nature of the solution to Liouville’s equation are used to reduce the dimensionality of uncertainties in orbital element space.It is demonstrated that the uncertainty propagation is fastest in the semi-major axis and the mean anomaly phase sub-space.The results obtained for uncertainty propagation for the two body problem are applied to investigate the uncertainty propagation in the presence of the J2 perturbation using a combination of osculating and mean element perturbation theory.Analytical orbital uncertainty propagation calculations are validated using Monte-Carlo results for several representative orbits.

关 键 词:ASTRODYNAMICS UNCERTAINTY Quantification 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象