检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于涵[1] 水鹏朗[1] 施赛楠 杨春娇[1] YU Han;SHUI Penglang;SHI Sainan;YANG Chunjiao(National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China;School of Electronic&Information Engineering,Nanjing University of Information Science&Technology,Nanjing 210000,China)
机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,西安10071 [2]南京信息工程大学电子与信息工程学院,南京210000
出 处:《电子与信息学报》2019年第12期2836-2843,共8页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61871303)~~
摘 要:广义Pareto分布的复合高斯模型可以很好地描述高分辨低擦地角对海探测场景中海杂波的重拖尾特性,实现该杂波模型下双参数的有效估计对雷达检测性能具有重要意义。对此,该文提出一种双参数的组合双分位点(CBiP)估计方法。该估计方法基于低阶多项式方程的显式求根表达式,充分组合利用回波中的样本信息,旨在实现高精度的双参数估计过程。此外,考虑到实际雷达工作中存在岛礁、渔船等造成的功率异常大的野点样本时,不同于传统的矩估计、最大似然(ML)估计等方法,组合双分位点估计方法仍可保持估计性能的鲁棒性。仿真及实测数据实验表明,在纯杂波环境中,组合双分位点估计方法可以实现与最大似然估计方法近似的估计精度,若存在异常样本,组合双分位点估计方法的估计性能优于上述几种传统估计方法。The generalized Pareto distributed sea clutter model,known as one of the compound-Gaussian models,is able to describe heavy-tailed characteristic of sea clutter under high-resolution and low grazing angle detection scene efficiently,and the accuracy of parameter estimation under this condition heavily impacts radar’s detection property.In this paper,Combined BiPercentile(CBiP)estimator is proposed to estimate the parameters.The CBiP estimator is realized based on the explicit roots of low-order polynomial equations and full application of sample information in returns,which provides a highly-accurate parameter estimation process.Besides,the CBiP estimator can maintain the robustness of estimation performance when outliers with extremely large power are existing in samples,while other estimators,including moment-based and Maximum Likelihood(ML)estimators,degrade extremely in estimation accuracy.Without outliers in samples,the combined bipercentile estimator shows similar accuracy with the ML estimator.With outliers,the combined percentile estimator is the only method with robustness in performance,compared with other estimators aforementioned.Moreover,the ability of the new estimator is verified by measured clutter data.
关 键 词:参数估计 广义Pareto分布模型 最大似然估计 组合双分位点估计 野点鲁棒性
分 类 号:TN958.93[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15