检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊敏[1] 王晓锋[1] 孟小峰[2] FAN Min;WANG Xiao-feng;MENG Xiao-feng(Fenyang College of Shanxi Medical University,Fenyang,Shanxi 032200,China;School of Information,Renmin University of China,Beijing 100872,China)
机构地区:[1]山西医科大学汾阳学院,山西汾阳032200 [2]中国人民大学信息学院,北京100872
出 处:《计算机科学》2019年第12期292-297,共6页Computer Science
摘 要:目前,心血管疾病已成为全球人类非传染性死亡的主要原因,死亡人数约占全球死亡总人数的1/3,且患病人数逐年增加。可穿戴设备被用于对心电图进行自动分类,以实现对心血管疾病的早监测、早预防。随着边缘机器学习和联邦学习的兴起,小型机器学习模型成为了人们关注的热点。针对可穿戴心电图设备低配置、低功耗及个性化的特点,文中研究了一种基于LSTM的轻量级网络结构,并采用自适应算法来优化病人个体的心电图分类模型。该模型利用MIT-BIH公开数据集开展实验,将VEB和SVEB的分类效果与其他相关研究进行了比较。实验结果表明,所提算法的模型结构简单且分类识别率高,能够满足可穿戴设备对病人心电图监测的需求。At present,cardiovascular diseases have become the main cause of global non-communicable death,death toll accounts for about one third of the total toll of death in the world,and the number of patients is increasing year by year.Wearable devices is used to automaticaly classify electrocardiogram to facilitate the early monitoring and prevention of cardiovascular diseases for patients.With the rise of edge machine lear-ning and federated learning,small machine learning models have become a hot issue.According to the characteristics of wearable electrocardiogram equipment such as low configuration,low power consumption and personalization,this paper studied a lightweight network model based on LSTM,and used adaptive algorithm to optimize the ECG classification model of individual patients.The experiment is conducted by using the MIT-BIH open dataset.And compared with the current studies on the detection performance of VEB and SVEB,the experiment results show that the proposed algorithm has simple model structure and high classification performance,which can meet the requirement of ECG monitoring for patients by wearable devices.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38