基于GBRT树模型分位数回归预测的CPFR补货方法  被引量:1

CPFR Replenishment Method Based On Quantile Regression Prediction of GBRT Tree Model

在线阅读下载全文

作  者:孙延华 张冬杰 曾庆维 金健 陈桓 姚小龙 SUN Yan-hua;ZHANG Dong-jie;ZENG Qing-wei;JIN Jian;CHEN Huan;YAO Xiao-long(SF Technology,Shenzhen 518000,China)

机构地区:[1]顺丰科技有限公司

出  处:《软件导刊》2019年第12期35-39,共5页Software Guide

基  金:深圳市发改委数字经济产业发展专项项目(2018)

摘  要:随着大数据的发展和物流科技信息化进程的加快,企业供应链数据呈爆炸式增长,且种类繁多、关系网络复杂,而传统CPRF技术中的预测模型已经不能适应供应链大数据需求预测,更不能依据需求预测进行有效的库存管理,经典的周期库存盘点策略也不能很好地适应非正态分布的需求数据,如何对供应链大数据进行准确预测并补货已成为供应链研究的热点。依据大数据的分位数回归预测技术,利用历史数据信息进行准确预测,并将分位数回归预测与补货模型合理有效连接,通过真实数据仿真分析,表明在98%的服务水平下,平均库存得到了降低。With the development of big data and the acceleration of logistics technology informatization,the data of enterprise supply chain has shown explosive growth,and there are many kinds and complex relationship networks.The traditional prediction model in CPRF technology can neither meet the demand prediction of large data in supply chain,nor the effective inventory management based on demand prediction.The classical periodic inventory strategy cannot well adapt to the demand data of non-normal distribution.How to accurately predict and replenish the large data of supply chain has become a hot spot of supply chain research.Based on the quantile regression prediction technology of large data,this paper uses historical data information to predict accurately,and links quantile re?gression prediction with replenishment model reasonably and effectively.The simulation analysis of real data shows that under 98%ser?vice level,the average inventory has been reduced.

关 键 词:大数据 物流供应链 CPRF 分位数回归预测 服务水平 库存 

分 类 号:TP306[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象