极小子样下无人侦察机系统效能评估多层Bayes-ADC模型  被引量:4

Multilayer Bayes-ADC model for system effectiveness evaluation of UAV with minimum sample

在线阅读下载全文

作  者:王召 刘思峰[1] 陈顶[1,2] 方志耕 WANG Zhao;LIU Sifeng;CHEN Ding;FANG Zhigeng(College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Management Department,University of Waterloo,Waterloo N2L 3G1,Canada)

机构地区:[1]南京航空航天大学经济与管理学院,南京211106 [2]滑铁卢大学管理科学系,滑铁卢N2L 3G1

出  处:《系统工程理论与实践》2019年第11期2964-2974,共11页Systems Engineering-Theory & Practice

基  金:国家自然科学基金面上项目(71671091);国家社科基金重点项目(12AZD102);中央高校基本科研业务费(NP2019104,NC2019003)~~

摘  要:针对研发阶段无人侦察机系统效能评估受到研发试验成本、样机数量等相关条件制约,其所能获取的样本量极少问题,提出多层Bayes-ADC模型.该方法运用多层Bayes技术,充分利用历史统计数据和经验信息,确定无人侦察机失效率、修复率多层Bayes估计,进而构造无人侦察机可用度、可信度.同时基于极大熵准则确定能力指标权重,进而构造无人侦察机能力向量.基于以上建立了极小子样背景的系统效能评估多层Bayes-ADC模型,解决了极小子样下的无人侦察机系统效能评估问题.案例分析验证了模型的有效性.The multilayer Bayes-ADC model was proposed to solve the problem that the effectiveness evaluation of the unmanned reconnaissance system in the development phase is limited by development test cost and the number of prototypes,the sample size that can be obtained is extremely small.The model uses multi-layer Bayes to determine the multilayer Bayes estimation of failure rate and repair rate of UAV by making full use of historical statistical data and empirical information,and then construct the availability and credibility of UAV.At the same time,based on the maximum entropy criterion,the weight of the capability index is determined,and then UAV's capability vector is constructed.Based on the above,the multilayer Bayes-ADC model for system effectiveness evaluation is established with minimum sample,and the problem of the system effectiveness evaluation of UAV is solved with minimum sample.The case analysis verifies the validity of the model.

关 键 词:无人侦察机 系统效能 极小子样 ADC模型 多层Bayes方法 

分 类 号:TB11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象