检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦强 生佳根 严长春 QIN Qiang;SHENG Jiagen;YAN Changchun(School of Computer Science and Engineering,Jiangsu University of Science and Technology,Zhenjiang 212000)
机构地区:[1]江苏科技大学计算机学院
出 处:《计算机与数字工程》2019年第12期3030-3034,共5页Computer & Digital Engineering
摘 要:论文在分析常用社区发现算法的优缺点时,指出了标签传播算法(LPA)具有时间复杂度低、不需要预先设置社区个数、计算过程简单,在处理大型复杂网络时,具有较高的效率的特点。但该算法在标签传播的过程中,未考虑到相邻节点在网络结构以及内容中的相似性。因此论文从节点相似度角度出发,提出了多特征融合的标签传播算法。该算法首先利用SimRank算法计算网络中节点的结构相似度,同时使用主体模型得到节点内容的主题分布,并计算不同节点主题分布的相似度,最终融合两种相似度,为邻接节点传播来的标签,赋予相应的权重,以此来改进传播策略。实验比较,该算法较优于传统的标签传播算法。When the advantages and disadvantages of common community discovery algorithms are analyzed,this paper points out that the label propagation algorithm(LPA)has the advantages of low time complexity,it doesn’t need to set the number of communities in advance,simple calculation process,high efficiency in dealing with large complex networks.However,in the process of label propagation,this algorithm does not consider the similarity of adjacent nodes in the network structure and the content.Therefore,this paper proposes a multi-feature fusion label propagation algorithm from the perspective of node similarity.The algorithm firstly uses SimRank algorithm to calculate the structural similarity of nodes in the network.At the same time,the main model is used to obtain the topic content distribution of the nodes,and the similarity of the topic distribution of different nodes is calculated.Finally,the two similarities are merged,and the labels propagated by neighboring nodes are given corresponding weights to improve the broadcast strategy.Through experimental comparison,this algorithm is superior to the traditional label propagation algorithm.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222