信访大数据与重复上访现象治理的变革  被引量:6

Big Data of Petition: A New Driving Force for Governance Reform of Repeated Petition Phenomenon

在线阅读下载全文

作  者:傅广宛[1] Fu Guangwan(School of Political Science and Public Administration,China University of Political Science and Law,Beijing 100088)

机构地区:[1]中国政法大学政治与公共管理学院

出  处:《中国行政管理》2019年第11期82-85,共4页Chinese Public Administration

基  金:国家社科基金重大项目“内涵式大部制改革视野下政府职能根本转变研究”(编号:13&ZD034);北京市信访办项目“运用大数据开展信访研究的思路与方法”;中国政法大学项目“基于大数据的信访老户微观行为计算与治理”

摘  要:大数据与信访治理的深度融合是信访治理发展的必由之路。信访大数据作为社会治理的基础性战略资源,将对重复上访现象的治理产生深刻的变革作用,能够从理念、体制、技术、文化等要素上实现信访治理的整体突破。其变革作用具体表现在:在治理空间上,能够促进宏观治理向微观治理的转换,改善公共产品供给和信访治理效果;在治理机制上,能够推动地方政府由被动应对向主动化解的跨越,有效提升政府的风险防范水平;在治理方式上,能够深度挖掘并刻画信访大数据所蕴含的各种信访规律,促成粗放治理向理性治理的变迁;在治理内容上,能够增进地方政府对政策执行行为的自我剖析意识,加快单向治理向双向治理的过渡。As a basic strategic resource of social governance,the big data of petition will have a profound impact on the governance of repeated petition phenomenon.It can achieve an overall breakthrough in the governance of petitions from different aspects such as concept,system,technology and culture,and can generate new governance concepts,content,model and mechanism.In terms of governance space,it can promote the transformation from macro governance to micro governance,and improve the supply of public goods and the effectiveness of petition governance.In terms of governance mechanism,it can turn the local government from passive response to active solution,and effectively raise the government’s risk prevention level.In terms of governance mode,it can intensively explore and profile various patterns of petitioning reflected in the big data,and promote the transition from extensive governance to rational governance.In terms of governance content,it can enhance local governments’self-analysis awareness in policy implementation behavior and accelerate the transition from one-way governance to two-way governance.

关 键 词:大数据 重复上访 治理变革 

分 类 号:D035[政治法律—政治学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象