机构地区:[1]C4S Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China [2]School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China [3]School of Energy and Power Engineering,Beihang University,Beijing 100191,China [4]Beijing Engineering Research Center of Sustainable Energy and Buildings,Beijing University of Civil Engineering and Architecture,Beijing 100044,China [5]School of Future Technology,University of Chinese Academy of Sciences,Beijing 100049,China [6]Beijing Key Laboratory of Cryo-Biomedical Engineering,Beijing 100190,China
出 处:《Science Bulletin》2019年第23期1795-1804,共10页科学通报(英文版)
基 金:supported by the National Natural Science Foundation of China (51706236, 31770107 and 21874116);National Key R&D Program of China (2018YFC1705106)
摘 要:The successful cryopreservation of organs is a strong and widespread demand around the world but faces great challenges. The mechanisms of cold tolerance of organisms in nature inspirit researchers to find new solutions for these challenges. Especially, the thermal, mechanical, biological and biophysical changes during the regulation of freezing tolerance process should be studied and coordinated to improve the cryopreservation technique and quality of complex organs. Here the cold tolerance of the Japanese carpenter ants, Camponotus japonicus Mayr, was greatly improved by using optimal protocols and feeding on L-proline-augmented diets for 5 days. When cooling to -27.66 ℃, the survival rate of frozen ants increased from 37.50% ± 1.73% to 83.88% ± 3.67%. Profiling of metabolites identified the concentration of whole-body L-proline of ants increased from 1.78 to 4.64 ng g-1 after 5-day feeding. High Lproline level, together with a low rate of osmotically active water and osmotically inactive water facilitated the prevention of cryoinjury. More importantly, gene analysis showed that the expression of ribosome genes was significantly up-regulated and played an important role in manipulating freezing tolerance. To the best of our knowledge, this is the first study to link genetic variation to the enhancement of ants’ cold tolerance by feeding exogenous cryoprotective compound. It is worth noting that the findings provide the theoretical and technical foundation for the cryopreservation of more complex tissues,organs, and living organisms.The successful cryopreservation of organs is a strong and widespread demand around the world but faces great challenges. The mechanisms of cold tolerance of organisms in nature inspirit researchers to find new solutions for these challenges. Especially, the thermal, mechanical, biological and biophysical changes during the regulation of freezing tolerance process should be studied and coordinated to improve the cryopreservation technique and quality of complex organs. Here the cold tolerance of the Japanese carpenter ants, Camponotus japonicus Mayr, was greatly improved by using optimal protocols and feeding on L-proline-augmented diets for 5 days. When cooling to -27.66 ℃, the survival rate of frozen ants increased from 37.50% ± 1.73% to 83.88% ± 3.67%. Profiling of metabolites identified the concentration of whole-body L-proline of ants increased from 1.78 to 4.64 ng g-1 after 5-day feeding. High Lproline level, together with a low rate of osmotically active water and osmotically inactive water facilitated the prevention of cryoinjury. More importantly, gene analysis showed that the expression of ribosome genes was significantly up-regulated and played an important role in manipulating freezing tolerance. To the best of our knowledge, this is the first study to link genetic variation to the enhancement of ants’ cold tolerance by feeding exogenous cryoprotective compound. It is worth noting that the findings provide the theoretical and technical foundation for the cryopreservation of more complex tissues,organs, and living organisms.
关 键 词:L-PROLINE CRYOPRESERVATION Freeze tolerance Metabolomics Gene expression
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...