Classifying Machine Learning Features Extracted from Vibration Signal with Logistic Model Tree to Monitor Automobile Tyre Pressure  被引量:1

在线阅读下载全文

作  者:P.S.Anoop V.Sugumaran 

机构地区:[1]School of Mechanical and Building Sciences(SMBS),Vellore Institute of Technology Chennai campus,Chennai,India

出  处:《Structural Durability & Health Monitoring》2017年第2期191-208,共18页结构耐久性与健康监测(英文)

摘  要:Tyre pressure monitoring system(TPMS)is compulsory in most countries like the United States and European Union.The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data.A difference in wheel speed would trigger an alarm based on the algorithm implemented.In this paper,machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer.The obtained signals will be used to compute through statistical features and histogram features for the feature extraction process.The LMT(Logistic Model Tree)was used as the classifier and attained a classification accuracy of 92.5%with 10-fold cross validation for statistical features and 90.5% with 10-fold cross validation for histogram features.The proposed model can be used for monitoring the automobile tyre pressure successfully.

关 键 词:Machine learning Vibration ACCELEROMETER Statistical Features Histogram Features Logistic model tree(LMT) Tyre pressure monitoring system 

分 类 号:U46[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象