检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Guangzhou University,Guangzhou High Education Mega Center,Guangzhou,510006,China [2]Illinois Institute of Technology,3440 South Dearborn,Suit 100,Chicago,IL,60616,USA
出 处:《Computers, Materials & Continua》2018年第9期529-539,共11页计算机、材料和连续体(英文)
摘 要:There is a steep increase in data encoded as symmetric positive definite(SPD)matrix in the past decade.The set of SPD matrices forms a Riemannian manifold that constitutes a half convex cone in the vector space of matrices,which we sometimes call SPD manifold.One of the fundamental problems in the application of SPD manifold is to find the nearest neighbor of a queried SPD matrix.Hashing is a popular method that can be used for the nearest neighbor search.However,hashing cannot be directly applied to SPD manifold due to its non-Euclidean intrinsic geometry.Inspired by the idea of kernel trick,a new hashing scheme for SPD manifold by random projection and quantization in expanded data space is proposed in this paper.Experimental results in large scale nearduplicate image detection show the effectiveness and efficiency of the proposed method.
关 键 词:RIEMANNIAN MANIFOLD CONGRUENT transformation HASHING KERNEL TRICK
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229