Fast Near-duplicate Image Detection in Riemannian Space by A Novel Hashing Scheme  被引量:2

在线阅读下载全文

作  者:Ligang Zheng Chao Song 

机构地区:[1]Guangzhou University,Guangzhou High Education Mega Center,Guangzhou,510006,China [2]Illinois Institute of Technology,3440 South Dearborn,Suit 100,Chicago,IL,60616,USA

出  处:《Computers, Materials & Continua》2018年第9期529-539,共11页计算机、材料和连续体(英文)

摘  要:There is a steep increase in data encoded as symmetric positive definite(SPD)matrix in the past decade.The set of SPD matrices forms a Riemannian manifold that constitutes a half convex cone in the vector space of matrices,which we sometimes call SPD manifold.One of the fundamental problems in the application of SPD manifold is to find the nearest neighbor of a queried SPD matrix.Hashing is a popular method that can be used for the nearest neighbor search.However,hashing cannot be directly applied to SPD manifold due to its non-Euclidean intrinsic geometry.Inspired by the idea of kernel trick,a new hashing scheme for SPD manifold by random projection and quantization in expanded data space is proposed in this paper.Experimental results in large scale nearduplicate image detection show the effectiveness and efficiency of the proposed method.

关 键 词:RIEMANNIAN MANIFOLD CONGRUENT transformation HASHING KERNEL TRICK 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象