模糊优选和改进突变模型在典型县域水权分配中的应用和比较  被引量:4

Application and Comparison of Fuzzy Optimization and Improved Mutation Model in Water Rights Allocation in Typical Counties

在线阅读下载全文

作  者:饶康 董斌[1] 龙志雄 黄凯 吴卫熊 张廷强 RAO Kang;DONG Bin;LONG Zhi-xiong;HUANG Kai;WU Wei-xiong;ZHANG Ting-qiang(School of Water Resources and Hydropower Engineering,Wuhan University,Wuhan 433072,China;Guangxi Institute of Hydraulic research,Nanning530000,Guangxi,china)

机构地区:[1]武汉大学水利水电学院,武汉430072 [2]广西壮族自治区水利科学研究院,南宁530023

出  处:《节水灌溉》2019年第12期95-101,共7页Water Saving Irrigation

基  金:广西重点研发计划项目(桂科AB16380257)

摘  要:目前水权分配研究大多针对流域和省(市)层面而县域及其以下层面考虑较少,以广西宾阳县为实际算例,利用宾阳县2015年的各项统计数据,采用模糊优选模型和改进突变模型对宾阳县各乡镇进行了详细的水权分配计算。同时,为评价水权分配的合理性,将模糊优选模型和改进突变模型的分配结果与宾阳县各乡镇2016年的实际用水进行了比较分析。结果表明,两种模型的分配结果基本符合实际用水情况,在县域一级的初始水权分配工作中,均能得出较好的分配结果,且改进突变模型的分配结果整体上优于模糊优选模型。At present,most studies on water right allocation are focused on river basin and provincial(city)level,but less on county level and the following level.This paper took Binyang county of Guangxi as an example and used various statistical data of Binyang county in 2015 to carry out detailed calculation of water right allocation in each township of Binyang county by using fuzzy optimization model and improved mutation model.At the same time,in order to evaluate the rationality of water right allocation,the distribution results of fuzzy optimization model and improved mutation model were compared and analyzed with the actual water use of each township of Binyang county in 2016.The results showed that the distribution results of the two models were basically in line with the actual water use situation,and better distribution results could be obtained in the initial water right distribution at the county level,and the distribution results of the improved mutation model were better than that of the fuzzy optimization model as a whole.

关 键 词:初始水权分配 县域 突变模型 模糊优选模型 熵权 

分 类 号:S273[农业科学—农业水土工程] TV213.4[农业科学—农业工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象