检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋晓博 SONG Xiaobo(Equipment Management and UVA Engineering College,Air Force Engineering University,Xi’an 710051,China)
出 处:《空军工程大学学报(自然科学版)》2019年第5期16-21,共6页Journal of Air Force Engineering University(Natural Science Edition)
基 金:国家自然科学基金(71601183)
摘 要:针对发动机燃油附件制造数据不足、风险因素复杂、动态作用显著的问题,提出一种结合层次全息模型和贝叶斯网络的改进风险评估模型。利用层次全息模型,建立发动机燃油附件制造风险辨识框架。在此基础上,构建发动机燃油附件制造风险贝叶斯网络模型,并对其参数学习最大似然法进行改进;最后,结合实例和Netica软件,通过仿真验证了改进模型的有效性,得到发动机燃油附件制造总体风险为25%,动平衡与302研孔为关键风险。Aimed at the problems that the data are insufficient in manufacture,the risk factors are comparatively complex and the dynamic effect is significant,an improved model combined hierarchical holographic model(HHM)with Bayesian network(BN)is proposed.The risk identification framework of engine fuel accessories manufacturing is constructed by HHM.On the basis of this,the BN model is built,and its parameter learning method of maximum likelihood is improved.Finally,the effectiveness is verified by the example and Netica software.The results show that the total risk value of the engine fuel accessories manufacturing is 25%,and the key risk factors are dynamic balance and 302 hole lapping.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.24.197