检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Manoj Kumar Debashis Panda Rasmikanti Biswal Suraj Kumar Behera Ranjit Kumar Sahoo
机构地区:[1]Department of Mechanical Engineering,NIT,Rourkela,Odisha 769008,India
出 处:《Journal of Traffic and Transportation Engineering》2019年第6期264-281,共18页交通与运输工程(英文版)
摘 要:Current work proposes a novel design methodology using curve-fitting approach for a non-axisymmetric airfoil convergent nozzle used in small-sized cryogenic turboexpander.The curves used for designing the nozzle are based on a combination of fifth and third order curve at upper and lower surface respectively.Four different turbulence model such as k-ε,SST,BSL and SSG Reynolds stress turbulence model is used to visualize and compare the fluid flow characteristics and thermal behaviors at various cross-sections.It is interesting to observe that the Mach number obtained at the outlet of the nozzle is highest and temperature drop is maximum for SSG model under similar boundary conditions.It is also observed that the designed nozzle with curve fitting approach is appropriate for impulse type turbine with a small amount of reaction.The key feature of this implementation is to obtain subsonic velocity at the nozzle exit and reduce the irreversible losses through the nozzle,which can affect the performance of a turboexpander.
关 键 词:Fluid flow pattern non-axisymmetric nozzle air CFD turboexpander.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3