检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李春明[1] 赵丽芳 李利学 Li Chunming;Zhao Lifang;Li Lixue(Research Institute of Forest Resource Information Techniques,CAF Beijing 100091;Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101;Wudaohe Forest Farm of Chengde County in Hebei Province,Chengde 067407)
机构地区:[1]中国林业科学研究院资源信息研究所,北京100091 [2]中国科学院遥感与数字地球研究所,北京100101 [3]河北省承德县五道河林场,承德067407
出 处:《林业科学》2019年第11期27-36,共10页Scientia Silvae Sinicae
基 金:国家自然科学基金面上项目“基于混合效应模型的联立方程组及概率分布模型在模拟森林生长中的方法研究”(31570625)
摘 要:【目的】基于混合效应模型和零膨胀模型方法构建林分水平枯损模型,为选择科学的经营措施提供理论依据。【方法】以吉林省1994年设置的295块蒙古栎固定样地为数据源,236块样地作为模拟数据,59块样地作为验证数据。构建基于林分因子、立地因子和气象因子的蒙古栎林分水平枯损模型,其基本形式包括泊松分布和负二项分布。考虑样地中存在大量零值问题,在基础模型上加入零膨胀和零改变模型。为解决模型的嵌套和纵向数据问题,在构建模型时考虑样地的随机效应,选择验证数据进行精度验证。【结果】样地断面积、株数和最暖月平均气温是枯损概率和数量最重要的影响因子;考虑样地随机效应后,可明显提高模型模拟精度;负二项分布模型因考虑数据过度离散问题,模拟精度高于泊松分布。【结论】同时考虑随机效应和零膨胀的负二项分布模型,其模拟效果最好。【Objective】 As an important component of forest growth yield systems, it is necessary to make accurate prediction for stand mortality.【Method】 About 295 permanent sample plots were established across the natural range of Mongolian oak in the Jilin Province in 1994. All plots were measured every 5 years, and the data were measured three times. 236 plots were used as simulation data and the other 59 plots as validation data. The main objective of this study was to construct stand-level mortality model of Quercus mongolica in relation to stand factor, site factor and climate factor. The basic forms of the model include Poisson distribution model and negative binomial distribution model. Considering the existence of a large number of zero values in the sample plots, the zero-inflated and zero-altered models were added to these basic models. In order to solve the problem of nesting and longitudinal data, the random effects of sample plot were taken into account in the construction of the model. In the end, the validation data was used to verify.【Result】 The results showed that the basal area of hectare, the number per hectare and the mean warmest month temperature are the most important factors influencing the probability and quantity of mortality. The simulation precision of the model was improved obviously after considering the plot random effects. Due to the over-dispersed of the data the accuracy of the negative binomial distribution model was higher than that of the Poisson distribution.【Conclusion】 The simulation effects of the model were the best when considering the random effects and the zero-inflated negative binomial distribution model simultaneously. The validation result also supported this conclusion.
关 键 词:广义线性混合效应模型 零膨胀模型 蒙古栎 枯损 林分
分 类 号:S757[农业科学—森林经理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120