基于N-K模型的道路危险品运输系统耦合风险分析  被引量:29

Coupling risk analysis of road dangerous goods transportation system based on N-K model

在线阅读下载全文

作  者:杨婷 帅斌[1] 黄文成[1] YANG Ting;SHUAI Bin;HUANG Wencheng(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu Sichuan 610031,China)

机构地区:[1]西南交通大学交通运输与物流学院

出  处:《中国安全科学学报》2019年第9期132-137,共6页China Safety Science Journal

基  金:国家自然科学基金资助(71173177);2018年西南交通大学第八届博士研究生拔尖创新人才培育项目(2018-23);2018年西南交通大学研究生学术培养提升计划(跨学科创新培育)(2018KXK04);2018年西南交通大学优秀博士学位论文培育项目

摘  要:为识别危险品道路运输系统中的风险因素,从源头上预防运输事故发生,应用N-K模型分析系统耦合风险。首先将风险因素划分为人、机、物、环、管5类;其次根据参与耦合的风险因素数量划分出单、双、3、4和5因素耦合风险;然后采用N-K模型计算各种耦合的耦合风险值;最后以我国2017年上半年发生的220起道路危险品运输事故为例,计算系统耦合风险。结果表明:参与耦合的风险因素越多,耦合风险值越大;人-环耦合风险最大;物-管耦合风险最小;主客观相互耦合风险较大;多种主观因素耦合风险较小。In order to identify risk factors in road transportation system of dangerous goods and prevent transportation accidents from the source,the N-K model was used to analyze the system risk coupling.Firstly,risk factors were divided into five categories:human,machine,material,environment and management.Then according to the number of risk factors involved in the coupling,single,double,triple,quadruple and five factors coupling risks were divided,and the N-K model was used to calculate the coupling risk values of various couplings.Finally,taking 220 road dangerous goods transportation accidents in China in the first half year of 2017 as examples,the system coupling risk was calculated.The results show that the more risk factors involved in coupling,the greater the coupling risk value will be,that the risk of coupling between human and environment is the greatest and that between material and management is the smallest,and that coupling risk between subject and objective is relatively large while the risk of multiple subjective factors coupling with each other is smaller.

关 键 词:道路运输 危险品 风险分析 N-K模型 耦合风险 

分 类 号:X951[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象