基于编码—解码模型的D类功率放大器行为建模  被引量:2

Behavior Modeling of Class-D Power Amplifier Based on Encoder-Decoder Model

在线阅读下载全文

作  者:赵一鹤 邵杰 程永亮 ZHAO Yihe;SHAO Jie;CHENG Yongliang(School of Electronic Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)

机构地区:[1]南京航空航天大学电子信息工程学院

出  处:《电子科技》2020年第2期20-24,共5页Electronic Science and Technology

基  金:国家自然科学基金(61401198)~~

摘  要:D类功率放大器具有优异的传输效率,属于开关类功放,其输出信号存在较大的非线性失真。对D类功率放大器进行行为建模时要同时考虑其非线性和记忆特性。文中将小波变换引入到编码—解码神经网络模型中,提出了小波编码—解码神经网络模型。使用基于门限循环单元的编码—解码模型和小波编码—解码模型进行D类功率放大器的行为建模。实验结果表明,文中提出的D类功率放大器行为模型相比于传统的Voterra-Laguerre模型而言,在信号的时域和频域都具有更高的精度。Class D power amplifiers have excellent transmission efficiency and are classified as power amplifiers.Their output signals have large nonlinear distortion.The behavior modeling of calss-D power amplifier should take into account both nonlinearity and memory characteristics.This study introduced wavelet transform into the encoder-decoder neural network model,and proposed sequence to sequence wavelet neural network model.In this paper,the encoder-decoder model and sequence to sequence wavelet model based on gated recurrent unit were used in the behavior modeling of class-D power amplifier.Experiments results demonstrated that the proposed behavior model of class-D power amplifier had higher precision in time and frequency domain than the traditional Voterra-Laguerre model.

关 键 词:D类功率放大器 非线性系统 行为模型 门限循环单元 编码—解码神经网络 小波变换 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象