Parametric optimization and microstructural characterization of friction welded aeronautic aluminum alloy 2024  被引量:6

航空用铝合金2024摩擦焊接工艺参数优化及显微组织(英文)

在线阅读下载全文

作  者:Pei-hao GENG Guo-liang QIN Jun ZHOU Chang-an LI 耿培皓;秦国梁;周军;李长安(山东大学材料液固结构演变与加工教育部重点实验室,济南250061;山东大学材料连接技术研究所,济南250061;机械科学研究院哈尔滨焊接研究所,哈尔滨150028)

机构地区:[1]Key Laboratory for Liquid−Solid Structure Evolution and Processing of Materials,Ministry of Education,Shandong University,Ji’nan 250061,China [2]Institute of Materials Joining,Shandong University,Ji’nan 250061,China [3]Harbin Welding Institute,Chinese Academy of Machinery Science and Technology,Harbin 150028,China

出  处:《Transactions of Nonferrous Metals Society of China》2019年第12期2483-2495,共13页中国有色金属学报(英文版)

基  金:Project(51475196) supported by the National Natural Science Foundation of China;Project(2017ZX04004001) supported by the National Science and Technology Major Project on High-end Numerically Controlled Machine Tools and Basic Manufacturing Technology,China

摘  要:Continuous drive friction welding was employed to join the aeronautic aluminum alloy 2024.Parametric optimization and microstructural characterization were investigated.Results show that friction pressure is the most significant factor influencing the tensile strength of joints.To obtain a high joint efficiency,the combination of moderate friction pressure,less friction time and higher upset pressure is recommended.The optimized joint efficiency from Taguchi analysis reaches 92% of base metal.Under the optimized experimental condition,the interfacial peak temperature is calculated analytically in the range of 779-794 K,which is validated by experimental data.Fine recrystallized grains caused by the high temperature and plastic deformation are observed in the friction interface zone.The grain refinement is limited in the thermo-mechanically affected zone,where most of matrix grains are deformed severely.The extensive dissolution and limited re-precipitation of strengthening phases result in a lower microhardness in the friction interface zone than that in the thermo-mechanically affected zone.开展航空用铝合金2024的连续驱动摩擦焊工艺优化试验,并表征焊接接头的显微组织演变。结果表明,摩擦压力是影响焊接接头抗拉强度的最显著因素,而采用适中的摩擦压力匹配较短的摩擦时间和较高的顶锻压力更易获取较高抗拉强度的接头。采用田口分析优化后的焊接工艺参数,焊后接头抗拉强度能够达到原始母材的92%。通过解析求解得到优化焊接工艺参数下焊接过程中摩擦界面的峰值温度处于779-794K,与试验测量结果吻合良好。由于高温和塑性变形的影响,摩擦界面的晶粒发生动态再结晶后尺寸明显细化。热影响区的晶粒细化有限,大部分原始晶粒受塑性流动影响发生变形。在摩擦阶段由于界面区域原始强化相发生固溶,且在随后冷却中二次析出不完全,最终导致摩擦界面的显微硬度降低。

关 键 词:AA2024 alloy continuous drive friction welding Taguchi analysis microstructure evolution mechanical properties 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象