Numerical Analysis of Aerodynamic Characteristics of the HALE Diamond Joined-Wing Configuration UAV  被引量:2

Numerical Analysis of Aerodynamic Characteristics of the HALE Diamond Joined-Wing Configuration UAV

在线阅读下载全文

作  者:Junlei Sun Heping Wang Zhou Zhou Shan Lei 

机构地区:[1]School of Aeronautic,Northwestern Polytechnical University,Xi'an 710072,China [2]R&D Center,AVIC Xi'an Aircraft Industry(Group)Company Ltd.(China),Xi'an 710089,China

出  处:《Journal of Harbin Institute of Technology(New Series)》2019年第6期31-45,共15页哈尔滨工业大学学报(英文版)

基  金:Sponsored by the Civil Aircraft Project(Grant No.MIE-2015-F-009);the Shaanxi Province Science and Technology Project(Grant No.2015KTCQ01-78)

摘  要:The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and numerical simulation. Research indicates that as the wing of the UAV is composed of the front wing and the after wing, the after wing has the ability to transmit the front wing's boundary layer to the after wing root which can inhibit the front wing's flow separation. Although the front wing was affected by the retardation of the after wing, the aerodynamic performance of the front wing was better than that of alone front wing in most cases. The after wing was also affected by the wake and downwash of the front wing, and its aerodynamic performance was greatly decreased. The characteristic curve of the pitching moment of the UAV had nonlinear characteristics. The flow field structure of the after wing changed by the front wing wake direct sweep and flow separation at the after wing root were the main reasons that non-linear ′rise′phenomenon occurred in two segments ( α = 0° and α = 8° ) of the characteristic curve of pitching moment. Moreover, coupling of the flow separation characteristic of the front wing and the after wing resulted in the pitching moment ′pitchup′ phenomenon. The lateral-directional static stability of the flat layout was weak. The HALE Diamond Joined-Wing configuration UAV ' s aerodynamic performance can be improved and the problems in engineering applications can be effectively alleviated by adjusting the overall layout parameters.The investigation on the aerodynamic characteristics of the high-attitude long-endurance(HALE) Diamond Joined-Wing configuration unmanned aerial vehicle(UAV) was carried out by the theoretical analysis method and numerical simulation. Research indicates that as the wing of the UAV is composed of the front wing and the after wing, the after wing has the ability to transmit the front wing’s boundary layer to the after wing root which can inhibit the front wing’s flow separation. Although the front wing was affected by the retardation of the after wing, the aerodynamic performance of the front wing was better than that of alone front wing in most cases. The after wing was also affected by the wake and downwash of the front wing, and its aerodynamic performance was greatly decreased. The characteristic curve of the pitching moment of the UAV had nonlinear characteristics. The flow field structure of the after wing changed by the front wing wake direct sweep and flow separation at the after wing root were the main reasons that non-linear ′rise′ phenomenon occurred in two segments(α=0° and α=8°) of the characteristic curve of pitching moment. Moreover, coupling of the flow separation characteristic of the front wing and the after wing resulted in the pitching moment ′pitchup′ phenomenon. The lateral-directional static stability of the flat layout was weak. The HALE Diamond Joined-Wing configuration UAV’s aerodynamic performance can be improved and the problems in engineering applications can be effectively alleviated by adjusting the overall layout parameters.

关 键 词:Diamond Joined-Wing configuration HALE numerical simulation aerodynamic characteristic layout parameters 

分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象