基于双极化Sentinel-1影像的邯郸市地表沉降时序InSAR分析  被引量:1

Time-series InSAR Analysis on Monitoring Surface Subsidence of Handan City Using Double-polarization Sentinel-1 Imagery

在线阅读下载全文

作  者:周洪月 王文旭[1] 张志全[1] 闫世勇[2] 汪云甲[2] Zhou Hongyue;Wang Wenxu;Zhang Zhiquan;Yan Shiyong;Wang Yunjia(Tianjin Institute of Surveying and Mapping,Tianjin 300381,China;China University of Mining and Technology,Xuzhou 221116,China)

机构地区:[1]天津市测绘院,天津300381 [2]中国矿业大学,江苏徐州221116

出  处:《城市勘测》2019年第6期48-52,共5页Urban Geotechnical Investigation & Surveying

基  金:国家自然科学基金项目(51574221)

摘  要:收集44景Sentinel-1双极化模式(VV与VH)SAR影像数据集,利用时序InSAR技术获取了邯郸市2015年6月~2017年8月期间的地表沉降信息。结果表明VV数据集在山区或地形起伏较大区域识别PS点的能力更强;位于邯郸东部的肥乡县(区)、成安县、广平县及临漳县的地表沉降趋势较明显,其主要受地下水持续开采影响。在4个选定区域内,两种极化数据集提取的沉降结果一致性检验较好,其平均相关系数为0.97,最大平均沉降速率为-53 mm/a。本研究结果为邯郸市进一步开展地表沉降治理工作提供了数据支持。Collecting 44-scene of VV and VH polarization mode of Sentinel-1 SAR imagery was combined with the time-series InSAR to monitor the surface subsidence of the Handan city from June 2015 to August 2017. It was showed that the VV mode of imagery dataset had stronger ability to identify PS points in mountainous areas or the areas with large terrain fluctuations by the monitoring results. During the period of study,the subsidence of the Handan’s eastern counties,such as Feixiang,Cheng’an,Guangping and Linzhang County,was relatively more significant,while the subsidence caused by the over-exploitation of groundwater. In the four selected areas of above counties,the subsidence results of the two-kind of datasets had a good consistency,and the average correlation coefficient was 0.97;the maximum average subsidence rate appeared in Feixiang County as a value of-53 mm/a. From the results,it can be provided the reliable ground subsidence data for further strengthening the ground subsidence in the region.

关 键 词:双极化 Sentinel-1 时序InSAR 地面沉降监测 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象