机构地区:[1]College of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China [2]Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai201204,China [3]Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai201204,China
出 处:《Chinese Journal of Polymer Science》2020年第1期92-99,I0008,共9页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China (Nos. 11605149, 11405259, U1932118, and U1732123);the Natural Science Foundation of Hunan Province (No. 2017JJ3309);the China Postdoctoral Science Foundation (No. 2017 M622595);the Zhejiang Public Service Technology Research Program/Analytical Test (No. LGC19F040001);the National Key R&D Program of China (No. 2017YFA0403000);the Science and Technology Commission of Shanghai Municipality (No. 17JC1400802)
摘 要:Layer-by-layer polyelectrolyte self-assembly, a common method for preparing high-quality ultra-thin films, was employed to direct the self-assembly behavior of polystyrene-block-poly(methyl methacrylate)(PS-b-PMMA) block copolymer for the first time. Differing from the previous neutral polymer brushes anchored to silicon substrates via chemical modification, polyelectrolyte multilayers(PEMs) were anchored by electrostatic interaction and provided a stable, smooth, and neutral interface. In the present study, PS-b-PMMA was deposited on poly(acrylamide hydrochloride)/poly(acrylic acid)(PAH/PAA) PEMs prepared by layer-by-layer self-assembly to successfully yield vertical nanodomains after thermal annealing. Seven layered PEMs revealed an excellent, smooth surface, with a low roughness of 0.6 nm. The periodic structure with interlamellar spacing of 47 nm was determined by grazing-incidence small-angle X-ray scattering(GISAXS). The morphology of the PS-b-PMMA nanodomains depended on the polyanion-to-polycation concentration ratio, which is related to the interaction between the block copolymer and the substrate. Our results demonstrate that layer-by-layer self-assembly is a helpful method for the phase separation of block polymers and the fabrication of vertical, ordered nanodomains.Layer-by-layer polyelectrolyte self-assembly, a common method for preparing high-quality ultra-thin films, was employed to direct the self-assembly behavior of polystyrene-block-poly(methyl methacrylate)(PS-b-PMMA) block copolymer for the first time. Differing from the previous neutral polymer brushes anchored to silicon substrates via chemical modification, polyelectrolyte multilayers(PEMs) were anchored by electrostatic interaction and provided a stable, smooth, and neutral interface. In the present study, PS-b-PMMA was deposited on poly(acrylamide hydrochloride)/poly(acrylic acid)(PAH/PAA) PEMs prepared by layer-by-layer self-assembly to successfully yield vertical nanodomains after thermal annealing. Seven layered PEMs revealed an excellent, smooth surface, with a low roughness of 0.6 nm. The periodic structure with interlamellar spacing of 47 nm was determined by grazing-incidence small-angle X-ray scattering(GISAXS). The morphology of the PS-b-PMMA nanodomains depended on the polyanion-to-polycation concentration ratio, which is related to the interaction between the block copolymer and the substrate. Our results demonstrate that layer-by-layer self-assembly is a helpful method for the phase separation of block polymers and the fabrication of vertical, ordered nanodomains.
关 键 词:Block copolymer POLYELECTROLYTE SELF-ASSEMBLY GISAXS
分 类 号:TB383.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...