机构地区:[1]福建师范大学光电与信息工程学院,医学光电科学与技术教育部重点实验室,福建省光电传感应用工程技术研究中心,福建省光子技术重点实验室,福建福州350007 [2]中国科学院光谱成像技术重点实验室,陕西西安710119 [3]福建师范大学医院,福建福州350007 [4]中国科学院沈阳自动化研究所,辽宁沈阳110016 [5]辽宁省科学技术情报研究所,辽宁沈阳110168
出 处:《光谱学与光谱分析》2020年第1期34-40,共7页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(11874006);福建省自然科学基金项目(2017j01745);教育部“长江学者和创新团队发展计划”创新团队项目滚动支持计划(IRT_15R10);中央引导地方科技发展专项(2017L3009);中国科学院光谱成像重点实验室开放基金项目(LSIT201809D);福建省科技厅光电传感应用工程技术研究中心开放课题(2018002,2018004);医学光电科学与技术教育部重点实验室开放课题(JYG1803)资助
摘 要:TeO2非共线声光可调滤波器(AOTF)是一种优良的电调谐分光器件,具有体积小巧、稳定性高、调谐快速、可实现便携等优点,在超光谱成像领域具有很高的应用价值。通过非共线AOTF与光学倒置显微镜有机结合,建立了声光滤波超光谱显微成像系统;在可见光范围内,开展了人体皮肤鳞状细胞癌组织的超光谱显微成像实验研究,获得了一系列不同衍射光中心波长下的皮肤鳞状细胞癌组织的光谱和对应的显微图像。系统性能检测实验结果显示,在超声频率为110~180 MHz范围内的衍射光带宽仅为1.28~2.84 nm,表明本研究中的AOTF具有很高的光谱分辨率,达到102个光谱通道量级,完全可以满足超光谱显微成像对生物组织结构进行精确识别的需要。本系统采用高质量的TeO2晶体、双胶合透镜以及优化的射频驱动源,有效地抑制了衍射光光谱的旁瓣。分析了超声频率与衍射光中心波长的调谐关系,以及超声频率与对应衍射光谱带宽的关系曲线,实验结果与理论计算结果有着较好的一致性。系统实验获得的皮肤鳞状细胞癌组织显微图像随光波长漂移不显著,表明超光谱成像系统的图像稳定性高。通过对比,分析了不同中心衍射光下的皮肤鳞状细胞癌组织显微图像的清晰度随光波长的变化规律,在522.52 nm时,皮肤鳞状细胞癌组织内部各精细结构区分明显,图像最为清晰。通过定义透射差异系数,分析了图像整体亮度曲线和透射差异系数随光波长变化曲线,其变化规律与直观观察结果相符合;对皮肤鳞状细胞癌组织图像进行了边缘提取分析,得出在497.87~551.29 nm内,可在整体视野较为明亮的情况下对皮肤鳞状细胞癌组织进行观察和研究,在509.69~527.59 nm范围内,组织边缘明亮清晰且完整,是进行皮肤鳞状细胞癌组织结构精确识别与分析的最佳窗口。该研究为人体皮肤鳞状细胞癌组织结构简便、灵�Noncollinear acousto-optic tunable filter(AOTF) based on TeO2 is a type of good light splitting device with the electric tuning. Because of its advantages of compact size, high stability, fast tuning, and being easy to carry out, it has high practical application value in hyperspectral imaging field. In this study, a hyperspectral microscopic imaging system was built by combining noncollinear AOTF with optical inverted microscope. In the range of visible light, the hyperspectral imaging of cutaneous squamous cell carcinoma was studied, and the spectra and the corresponding microscopic images at a series of optical central wavelengths were got. The performance of the hyperspectral imaging system was tested. The results shown that the bandwidth of the diffracted light in the range of 110~180 MHz was only 1.28~2.84 nm, which indicated that the AOTF in this study had a high spectral resolution with more than 102 spectral channels, and it could meet the needs of hyperspectral microscopic imaging and accurate identification of biological tissue structure. The system used higher quality TeO2 crystal, higher quality double balsaming lens and optimized RF driver to effectively depress the sidelobe of the diffraction spectrum. The tuning relationship between the acoustic frequency and the diffracted optical wavelength, and the relationship between the spectral bandwidth and the acoustic frequency were analyzed. The experimental results were in good agreement with the related the theoretical calculation. The experimental results shown the high image quality of the system because no obvious image shift with the optical wavelength was observed. By comparing the microscopic images of the cutaneous squamous cell carcinoma with different diffraction central wavelengths, the images were also the clearest at 522.52 nm, and the details of the cutaneous squamous cell carcinoma could be distinguished obviously. The difference of the whole brightness and the transmission difference coefficient with the optical wavelength were studied,
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...