顾及海面多路径的PPP自适应选权随机模型  被引量:1

PPP adaptive weighted stochastic model considering sea surface multipath

在线阅读下载全文

作  者:王郁茗 邵利民[1] 张尚悦[1] WANG Yuming;SHAO Limin;ZHANG Shangyue(Dalian Naval Academy,Dalian,Liaoning 116018,China)

机构地区:[1]海军大连舰艇学院

出  处:《测绘科学》2019年第12期35-41,66,共8页Science of Surveying and Mapping

基  金:国防科研基金资助项目(DJYKY2014-103)

摘  要:针对适合ZWD估计的Cosine平方PPP随机模型存在仅考虑大气对GNSS观测值的影响,而认为多路径误差对观测信号影响权重一致的问题,该文由舰船横纵摇作用下海面多路径效应的变化规律入手,结合海浪反射面对反射信号影响的研究,对Cosine平方PPP随机模型进行了改进,提出基于舰载GNSS使用的顾及动态海面多路径效应的PPP自适应选权随机模型。实验表明,基于自适应选权随机模型求解的ZWD精度较改进前误差减少30%左右,且海面多路径效应越强,精度提高效果越好。在基于舰载GNSS反演海上水汽含量的应用中,利用该模型可有效减少舰船摇摆情况下海面强多路径效应对ZWD反演精度的影响,保证ZWD满足水汽含量转换的精度要求。According to the Cosine square PPP stochastic model suitable for ZWD estimation only considered the influence of the atmosphere on the GNSS observations,and considered that the multipath error had the same weight on the observed signals.Based on the variation of the multipath effect of sea surface under the vertical and vertical motion of the ship,combined with the research on the influence of wave reflection on the reflected signal,the cosine square PPP stochastic model was improved,and the dynamic sea surface multipath based on the use of shipborne GNSS is proposed,an adaptive PPP adaptive weighting stochastic model.The results showed that the ZWD accuracy based on the adaptive weighted stochastic model was reduced by about 30%compared with the pre-improvement error,and the sea surface multipath effect the stronger,the better the accuracy improvement.In the application of shipborne GNSS inversion of seawater vapor content,the model could effectively reduce the influence of sea surface strong multipath effect on ZWD inversion accuracy under ship sway condition,and ensure that ZWD met the accuracy requirements of water vapor content conversion.

关 键 词:PPP随机模型 天线姿态 多路径效应 对流层湿延迟 海面粗糙度 

分 类 号:P227[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象