检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史登福 张魁[1] 陈作志[1] SHI Dengfu;ZHANG Kui;CHEN Zuozhi(Key Laboratory of Open-Sea Fishery Development,Ministry of Agriculture and Rural Affairs,South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Guangzhou 510300,China;College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China)
机构地区:[1]中国水产科学研究院南海水产研究所,农业农村部外海渔业开发重点实验室,广东广州510300 [2]上海海洋大学海洋科学学院,上海201306
出 处:《中国水产科学》2020年第1期12-23,共12页Journal of Fishery Sciences of China
基 金:国家重点研发计划项目(2018YFD0900906);国家自然科学基金项目(31602157);广东省促进经济发展专项资金(海洋经济发展用途)项目(GDME-2018E004)
摘 要:渔业资源评估是开展渔业资源管理,维系渔业可持续发展的基础工作。传统的渔业资源评估方法需要统计产量、资源丰度指数甚至年龄结构等大量数据,由于调查经费和数据的缺乏,全球仅1%的鱼种进行过系统性的资源评估。近年来,在数据有限(data-limited)条件下如何开展资源评估已日益成为学术界的关注热点。本文将基于生活史特征的评估方法分为仅需要生活史参数,需要产量数据和生活史参数,需要产量数据、生活史参数及体长或年龄数据等3大类,分别从方法、数据要求、输出结果及局限性进行了系统回顾分析,提供了关于生活史特征参数的常见估算方法,并就其中两种模型对北大西洋大青鲨(Prionace glauca)的可持续渔获量进行了初步评估与比较。最后,对数据缺乏模型的使用及模型在中国近海渔业资源评估中的运用提出了建议。Fishery stock assessment is a basic component of modern management,required to maintain sustainable fishery development.Traditional methods require a large amount of statistical data assessing yield,abundance index,and age structure.Due to limited funding and data for such surveys,only 1%of fish stocks have systematic assessments conducted.Therefore,it is difficult to assess maximum sustainable yield(MSY)or determine allowable catch for most fishery resources using traditional methods.In recent years,stock assessment using limited available data has become a focus of increasing academic research.A good assessment model based on incomplete data would allow managers to assess the risk of overexploitation,current population biomass,sustainable yield,optimal fishing mortality,and population status relative to reference points such as current total catch limits.These parameters can then be used to determine appropriate fishing limits for the target population.Such models use different assumptions and have different limitations.Therefore,it is necessary to select an appropriate model that will minimize error in the results when evaluating target resources.Where more than one model is available,they can be compared to assess which obtains the best results.In assessment of fishery resources using data-poor methods,more and more attention is being paid to characteristic life history parameters such as intrinsic growth rate,natural mortality coefficient,and so on.Under conditions that combine the yield of the evaluated population with the corresponding life cycle parameters,a more reliable MSY value or sustainable yield can be obtained.In this paper,assessment models based on life-history characteristics are divided into three categories:(1)models that only use life history parameters;(2)models that incorporate catch data and life-history parameters;(3)models that incorporate catch data,life-history parameters,and lifespan or age data.The introductions,data requirements,output results,and limitations of each model is revie
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.219.125