Straw layer burial to alleviate salt stress in silty loam soils: Impacts of straw forms  被引量:12

Straw layer burial to alleviate salt stress in silty loam soils: Impacts of straw forms

在线阅读下载全文

作  者:ZHANG Hong-yuan LU Chuang PANG Huan-cheng LIU Na ZHANG Xiao-li LI Yu-yi 

机构地区:[1]Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences

出  处:《Journal of Integrative Agriculture》2020年第1期265-276,共12页农业科学学报(英文版)

基  金:funded by the National Natural Science Foundation of China (31471455 and 31871584);the National Key Research and Development Program of China (2016YFC0501302)

摘  要:Salt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of field tests. Here, the following four straw forms with compaction thickness of 5 cm buried 40–45 deep were studied: no straw layer(CK), segmented straw(SL, 5 cm in length), straw pellet(SK), and straw powder(SF). The three straw forms(SL, SK and SF) significantly delayed the infiltration of irrigation water down the column profile by 71.20–134.3 h relative to CK and the migration velocity of the wetting front under SF was the slowest. It took longer for the wetting front to transcend SK than SL but shorter for it to reach the bottom of soil column after water crossed the straw layer. Compared with CK, the average volumetric water content in the 0–40 cm soil layer increased by 6.45% under SL, 1.77% under SK and 5.39% under SF. The desalination rates at the 0–40 and 0–100 cm soil layers increased by 5.85 and 3.76% under SL, 6.64 and 1.47% under SK and 5.97 and 4.82% under SF. However, there was no significant difference among straw forms in the 0–40 cm soil layer. Furthermore, the salt leaching efficiency(SLE, g mm^–1 h^–1) above the 40 cm layer under SL was 0.0097, being significantly higher than that under SF(0.0071) by 37.23%. Salt storage under SL, SK and SF in the 40–45 cm layer accounted for 4.50, 16.92 and 7.43% of total storage in the 1-m column profile. Cumulative evaporation under SL and SF decreased significantly by 41.20 and 49.00%, with both treatments having the most significant inhibition of salt accumulation(resalinization rate being 36.06 and 47.15% lower than CK) in the 0–40 cm soil layer. In conclusion, the different forms of straw layers have desalting effects under high irrigation level(446 mm). In particular, SL and SF performed better than SK in promoting deep salt leaching and inhibiting salt accumulation on the soil surface. However, SL was simpler to implementSalt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of field tests. Here, the following four straw forms with compaction thickness of 5 cm buried 40–45 deep were studied: no straw layer(CK), segmented straw(SL, 5 cm in length), straw pellet(SK), and straw powder(SF). The three straw forms(SL, SK and SF) significantly delayed the infiltration of irrigation water down the column profile by 71.20–134.3 h relative to CK and the migration velocity of the wetting front under SF was the slowest. It took longer for the wetting front to transcend SK than SL but shorter for it to reach the bottom of soil column after water crossed the straw layer. Compared with CK, the average volumetric water content in the 0–40 cm soil layer increased by 6.45% under SL, 1.77% under SK and 5.39% under SF. The desalination rates at the 0–40 and 0–100 cm soil layers increased by 5.85 and 3.76% under SL, 6.64 and 1.47% under SK and 5.97 and 4.82% under SF. However, there was no significant difference among straw forms in the 0–40 cm soil layer. Furthermore, the salt leaching efficiency(SLE, g mm–1 h–1) above the 40 cm layer under SL was 0.0097, being significantly higher than that under SF(0.0071) by 37.23%. Salt storage under SL, SK and SF in the 40–45 cm layer accounted for 4.50, 16.92 and 7.43% of total storage in the 1-m column profile. Cumulative evaporation under SL and SF decreased significantly by 41.20 and 49.00%, with both treatments having the most significant inhibition of salt accumulation(resalinization rate being 36.06 and 47.15% lower than CK) in the 0–40 cm soil layer. In conclusion, the different forms of straw layers have desalting effects under high irrigation level(446 mm). In particular, SL and SF performed better than SK in promoting deep salt leaching and inhibiting salt accumulation on the soil surface. Howeve

关 键 词:straw layer segmented straw with 5 cm length straw pellet straw powder infiltration evaporation water and salt distribution 

分 类 号:S156.4[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象