检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵浩苏 邢凯 宋力[1] Zhao Haosu;Xing Kai;Song Li(School of Software Engineering,University of Science and Technology of China,Suzhou 215123,Jiangsu,China;School of Computer Science and Technology,University of Science and Technology of China,Hefei 230026,Anhui,China)
机构地区:[1]中国科学技术大学软件学院,江苏苏州215123 [2]中国科学技术大学计算机科学与技术学院,安徽合肥230026
出 处:《计算机应用与软件》2020年第1期157-164,共8页Computer Applications and Software
基 金:国家自然科学基金项目(61332004)
摘 要:在视觉SLAM系统中,传统的回环检测方法难以同时满足通用性和实时性。通过标志区域提取和CNN特征提取,提出在线构建增量式字典的回环检测方法。通过对图像进行随机扭曲来模拟运动产生的视角变化,结合GIST特征实现无监督的模型快速训练。通过局部标志区域的二进制特征实现快速检索,全局浮点特征实现选择最优匹配。实验表明,与传统方法相比,在100%准确率前提下,召回率提升约30%,整体查询时间约200 ms,内存占用约30 MB。在不同场景下检测更稳定,能够实现快速鲁棒的回环检测。In the visual SLAM system,the traditional loop closure detection method is difficult to satisfy both versatility and real-time.Through marker region extraction and CNN feature extraction,we propose a loop closure detection method for constructing incremental dictionary online.The image was randomly distorted to simulate the change of the angle of view generated by the motion.This method combined the GIST feature to realize the unsupervised rapid training of the model.The fast retrieval was realized by the binary features of the local marker area,and the selection of the optimal matching was completed by the global floating point feature.Experiments show that compared with the traditional method,the recall rate is improved by about 30%under the premise of 100%accuracy,the overall query is about 200 ms,and the memory usage is about 30 MB.The detection is more stable in different scenarios,and is fast and robust.
关 键 词:VSLAM 回环检测 CNN特征提取 无监督训练 增量式字典
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63