基于防御性驾驶的一维元胞自动机交通流模型  被引量:6

One-dimensional cellular automaton traffic flow model based on defensive driving

在线阅读下载全文

作  者:侯培国[1] 闫成浩 余焊威 洪嘉阳 HOU Peiguo;YAN Chenghao;YU Hanwei;HONG Jiayang(School of Electrical Engineering,Yanshan University,Qinhuangdao Hebei 066004,China)

机构地区:[1]燕山大学电气工程学院

出  处:《北京交通大学学报》2019年第6期62-66,共5页JOURNAL OF BEIJING JIAOTONG UNIVERSITY

基  金:国家自然科学基金(61873223)~~

摘  要:针对SDNaSch模型中车辆容易发生急刹车行为的不安全性问题,对前车停车之前的减速行为进行研究,提出了一种基于防御性驾驶的一维元胞自动机交通流模型.通过计算机数值模拟,得到了不同防御性减速概率下流量-密度关系,平均速度-密度关系,急刹车比例-密度关系与时空图,并对防御性驾驶模型的安全性与稳定性进行了分析.结果表明,DD模型提高了中高密度的流量,延缓了完全静止堵塞现象的发生,大大减少了运行车辆的急刹行为,提高了道路交通的稳定性与安全性.在中高密度区域,出现稳定均匀的同步流,同时发现与实测数据相符合的"速度跃迁"现象,与SDNaSch相比,能够更好地描述道路交通流的实际运行状态.To solve the low safety problem of the SDNaSch model in which vehicles are prone to brake sharply,a traffic flow model of one-dimensional cellular automata based on defensive driving is proposed by studying the deceleration behavior of the preceding vehicle before the braking process.Through computer numerical simulation,the flow-density relationship,average speeddensity relationship,emergency brake ratio-density relationship and space-time diagram under different defensive deceleration probabilities are obtained,and the safety and stability of defensive driving model are analyzed.The simulation results show that DD model improves traffic flow in the medium-high density area,delays the occurrence of static congestion,greatly reduces the emergency brake behavior of the running vehicle,and improves the stability and safety during transportation.In the medium-high density area,a stable and uniform synchronized flow appears,at the same time,the"speed transition"phenomenon consistent with the measured data is observed.Compared with the traditional SDNaSch model,the model proposed in this paper can better describe the actual running state of the traffic flow.

关 键 词:交通工程 交通流 元胞自动机 防御性驾驶 速度跃迁 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象