检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏建红 吴军良 徐涢基 高杰 WEI Jian-hong;WU Jun-liang;XU Yun-ji;GAJie(Institute of Technology,East China Jiau Tong University,Nanchang Jiangxin 330100,China;Modem Economics&Management College,Jiangxi University of Finance and Economics,Jiangxi Nanchang 330013,China)
机构地区:[1]华东交通大学理工学院 [2]江西财经大学经济管理学院
出 处:《计算机仿真》2019年第12期411-414,436,共5页Computer Simulation
基 金:江西省教育厅科技项目(GJJ171481)
摘 要:为了提高整个集群网络可组合信息应用系统的可靠性,需要对信息流进行多阶段优化检测,提出基于K-means聚类的集群网络可组合信息流多阶段优化检测方法。结合K-means算法的相关思想以及集群网络可组合信息流的相关特点,将欧式距离作为指标,比较不同数据流的相似度并划分聚类。在上述基础上,算法引用经过改进后的萤火虫算法(BGSO)对集成模型进行优化,获取最优子集。并使检测模型随着信息流的变化进行自适应更新,提高整体的检测准确性节省检测时间。实验结果验证了所提方法相比传统方法在各个方面都有了一定的改进,也充分证明了所提方法的有效性。In order to improve the reliability of the combinable information application system,it is necessary to optimize and detect information flow from multiple stages.Therefore,a method of multi-stage optimization detection for combinable information flow method in cluster network based on K-means clustering was proposed.Combining the related ideas of K-means algorithm with the related characteristics of combinable information flow,the Euclidean distance was used as the index to compare the similarity of different data streams and partition clusters.On this basis,the binary glowworm swarm optimization(BGSO)was used to optimize the integrated model and get the best subset.Finally,the detection model was adaptively updated with the change of information flow,so that the overall detection accuracy was improved to save detection time.Simulation results show that the proposed method has some improvements in various aspects.The effectiveness of the proposed method can be fully proved.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249