检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡亚元[1] HU Yayuan(Research Center of Coastal and Urban Geotechnical Eng.,Zhejiang Univ.,Hangzhou 310058,China)
机构地区:[1]浙江大学滨海与城市岩土工程研究中心
出 处:《工程科学与技术》2020年第1期38-45,共8页Advanced Engineering Sciences
基 金:国家自然科学基金项目(51178419)
摘 要:为解决饱和多孔介质的建模问题,采用工程混合物理论建立了饱和多孔介质体积本构理论框架。首先,假定多孔固相与流相基质体积变形功相互独立,采用Terzaghi有效球应力、孔压和流体基质压力作为本构模型的应力状态变量,获得了固相、固相基质和流相基质体应变的余能表达式。其次,根据Lade和de Boer模型试验测试数据,建立了加卸载阶段饱和多孔白塞木立方体流固两相体积本构方程,推导了固相体积切线模量、Biot切线系数和流相Biot切线模量等力学参数计算公式;分析了加载阶段固相体积切线模量、Biot切线系数、流相Biot切线模量等力学参数随Terzaghi有效球应力和孔压的变化规律。最后,根据本文体积本构模型和静力平衡方程建立了饱和多孔介质的1维固结方程,数值分析了饱和多孔白塞木立方体的固结特性,获得了固结度和沉降随时间的变化曲线。研究表明:固相体积切线模量随Terzaghi有效球应力的增大而增大,随孔压u的增大而减小。Biot切线系数介于0.42~0.95之间,随Terzaghi有效球应力和孔压的增大而减小。流体Biot切线模量随Terzaghi有效球应力的增大先减小后增大,随孔压增大而减小。孔压切线系数在大多数情况下小于1.0。考虑固相基质变形时饱和多孔介质的初始孔压不等于外荷载,因此饱和多孔介质在外荷载作用下存在瞬时沉降。本文的建模方法可用于非线性饱和多孔介质的建模和数值分析工作。In order to solve the modeling problems of saturated porous media,the engineering mixture theory was used to formulate the bulk constitutive theoretical framework of saturated porous media.Firstly,Supposing that the bulk deformation works of porous solid and fluid matrix were mutually independent and using Terzaghi’s effective spherical stress and pore pressure and fluid matrix pressure as stress state variables of constitutive model,the bulk stains expressions of solid phase and solid matrix and fluid matrix were obtained in the complementary energy.Secondly,the solid and fluid bulk constitutive equations of saturated porous cubes of balsawood in the loading and unloading stages were founded on the basis of the measuring data of model test conducted by Lade and de Boer.The calculating formulae of mechanical parameters were deduced such as solid bulk tangent modulus,Biot’s tangent coefficient and fluid Biot’s tangent modulus and so on.The change rules of mechanical parameters along with Terzaghi’s effective spherical stress and pore pressure were analyzed in the loading stage for solid bulk tangent modulus,Biot’s tangent coefficient and fluid Biot’s tangent modulus and so on.Finally,the one-dimensional consolidation equation of saturated porous media was derived from the bulk constitutive models of the paper and static balance equation.The consolidation behaviors of saturated porous cubes of balsawood were numerically analyzed and the change curves of consolidation degree and settlement with time were obtained.The researches show that,the solid bulk tangent modulus increased along with Terzaghi’s effective spherical stress and decreased along with pore pressure.The Biot’s tangent coefficient was between 0.42~0.95 and decreased along with Terzaghi’s effective spherical stress and pore pressure.The fluid Biot’s tangent modulus decreased firstly and then increased with Terzaghi’s effective spherical stress,and decreased with the increase of pore pressure.The tangent coefficient of pore pressure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166