检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵兴文 杭丽君 宫恩来 叶锋 丁明旭 Zhao Xingwen;Hang Lijun;Gong Enlai;Ye Feng;Ding Mingxu(College of Automation,Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China)
机构地区:[1]杭州电子科技大学自动化学院
出 处:《光电工程》2020年第1期62-69,共8页Opto-Electronic Engineering
基 金:国家自然科学基金资助项目(51777049);青年科学基金资助项目(51707051)~~
摘 要:针对人脸关键点检测(人脸对齐)在应用场景下的速度和精度需求,首先在SSD基础之上融合更多分布均匀的特征层,对人脸框坐标进行级联预测,形成对于多尺度人脸信息均具有更加鲁棒响应的深度学习检测器MR-SSD。其次在局部二值特征LBF的级联形状回归方法基础上,提出了基于面部像素差值的多角度初始化算法。采用端正人脸正负90°倾斜范围内的五组特征点形状进行初始化,求取每组回归后形状的眼部特征点像素均方差值并以最大者对应方案作为最终回归形状,从而实现对多角度倾斜人脸优异的拟合效果。本文所提出的最优架构可以实时获得极具鲁棒性的人脸框坐标并且可实现对于多角度倾斜人脸的关键点检测。In order to meet the speed and accuracy requirements of face key point detection(face alignment)in application scenarios,firstly,cascaded prediction is carried out on the basis of SSD(single shot multibox detector),which combines more uniformly distributed feature layers to form MR-SSD(more robust SSD),a deep learning detector with more robust response to multi-scale faces.Secondly,based on the cascade shape regression method of local binary feature(LBF),a multi-angle initialization algorithm based on the difference between the facial pixels is proposed.Five groups of feature points in the 90 degree inclination range of positive and negative face are initialized to achieve excellent fitting effect for inclined face under multi angles.The mean square deviation of each group of feature points after regression is calculated and the maximum corresponding shape is used as the final regression shape.The optimal architecture proposed in this paper can obtain robust face bounding box and face alignment schemes against multi-angle tilt in real time.
关 键 词:深度学习 机器学习 人脸关键点检测 人脸对齐 像素差值
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222