检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄颖[1] 张豹 陈伟荣[1] 戴鹏 HUANG Ying;ZHANG Bao;CHEN Weirong;DAI Peng(The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China;Department of Computer Science and Engineering,Southeast University,Nanjing 211189,China)
机构地区:[1]中国电子科技集团公司第二十八研究所,南京210007 [2]东南大学计算机科学与工程学院,南京211189
出 处:《指挥信息系统与技术》2019年第6期81-85,共5页Command Information System and Technology
基 金:装备发展部“十三五”预研课题资助项目
摘 要:随着海量信息检索技术的发展,对文本、图片和视频等高维数据对象的相似性检索要求不断提高。局部敏感哈希(LSH)是解决高维数据近邻检索的主要方法之一,但存在索引存储代价高及查询效率低等问题。提出了一种基于二级混合索引模型构造方法,先利用溢出树(Spill tree)对数据集进行划分,再对每个部分构建基于LSH的哈希表,形成混合索引,支撑高维数据检索。试验表明,该方法缩小了高维数据对象的索引存储空间,提高了查询效率和查询质量。With the development of mass information retrieval technology,requirements for similarity retrieval of high-dimensional data objects such as text,pictures and videos are constantly increasing.The locality sensitive hashing(LSH)is one of the mainstream methods for solving high-dimensional data neighbor queries.However,this method has the problems of high index storage cost and low query efficiency.Aiming at the shortcomings of existing LSH-based algorithm s,a new two-level hybrid index structure is proposed,it first uses the spill tree to divide the data set,and then constructs an LSH-based hash table for each part.It forms a hybrid index to support high-dimensional data retrieval.Experiments show that the method reduces the index storage space of high-dimensional data objects and improves the query efficiency and quality.
分 类 号:P301[天文地球—地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31