检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许立武 李开成 肖贤贵 赵晨 尹家明 倪逸 Xu Liwu;Li Kaicheng;Xiao Xiangui;Zhao Chen;Yin Jiaming;Ni Yi(State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
机构地区:[1]华中科技大学电气与电子工程学院强电磁工程与新技术国家重点实验室
出 处:《电测与仪表》2020年第1期62-69,130,共9页Electrical Measurement & Instrumentation
基 金:国家自然科学基金资助项目(51277080)
摘 要:针对电能质量复合扰动识别中识别准确率不高和泛化性能较差的问题,提出基于深度前馈网络(Deep Feedforward Network,DFN)的扰动识别方法。先在少数重要频率点上对扰动信号作不完全S变换,从得到的时频矩阵中提取多种识别特征,构建和训练三层DFN扰动分类器,并使用Dropout正则化来提高分类器的泛化性能。仿真实验和实测实验表明,文中的方法能够有效识别8种复合扰动在内的共17种扰动类型,并具有很好的抗噪性能和泛化性能。与CART决策树、极限学习机、随机森林等现有方法相比,方法识别准确率更高,鲁棒性更好,具有良好的应用前景。In this paper,aiming at the problem of low recognition accuracy and poor generalization performance in recognition of power quality complex disturbances,a new recognition method based on deep feedforward network(DFN) is proposed in this paper. Firstly,original disturbance signals are processed by incomplete S-transform at several important frequency samples. Then,some distinctive features are extracted from the result of incomplete S-transform. Finally,a threelayer DFN classifier is constructed and trained,and the Dropout regularization is adopted to improve the generalization and noise immunity. The simulation and experiment results show that the proposed method can effectively identify 17 types of disturbances,including 8 types of complex disturbances. The results in different noise levels indicate that the method also has commendable anti-noise and generalization performance. Compared with the existing methods such as CART decision tree,extreme learning machine and random forest,the proposed method has higher recognition accuracy,better robustness and good application prospects.
关 键 词:电能质量 扰动识别 深度学习 深度前馈网络 不完全S变换
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62