检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑宏[1] 顾雨冰 卞瑞 ZHENG Hong;GU Yubing;BIAN Rui(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]江苏大学电气信息工程学院
出 处:《电力系统及其自动化学报》2020年第1期108-115,共8页Proceedings of the CSU-EPSA
基 金:国家自然科学基金资助项目(51877099);江苏高校优势学科建设工程资助项目(61074019)
摘 要:针对常规并网逆变器中电网电压会出现畸变及传统控制器动态响应差等问题,通过分析准比例谐振和传统重复控制策略的优缺点,提出了一种基于对角递归神经网络的改进型QPR-双模重复控制(DMRC)复合控制器并给出其控制算法,DRNN采用LM算法,利用DRNN参数自整定技术,对改进型QPR-DMRC控制器参数进行在线整定,该方法既能够有效地对奇、偶次谐波进行抑制,同时解决了QPR控制器参数整定困难等问题。采用Matlab/Simulink进行仿真研究,结果表明该方法能有效地降低系统谐波总畸变率,提高了系统的抗干扰能力,实现逆变器无静差稳定运行。Considering problems such as grid voltage distortion in the conventional grid-connected inverter and poor dy⁃namic response of the traditional controller,an improved quasi-proportional resonance(QPR)-double mode repetitive control(DMRC)compound controller based on diagonal recurrent neural network(DRNN)is proposed by analyzing the advantages and disadvantages of QPR and the traditional repetitive control(RC)strategy,and its control algorithm is given.The DRNN adopts the Levenberg-Marquardt(LM)algorithm.Moreover,by using the parameter self-tuning tech⁃nology of DRNN to adjust the parameters of the improved QPR-DMRC controller online,this method not only effective⁃ly suppresses the odd-and even-order harmonics,but also solves problems including the difficulty in tuning the QPR controller’s parameters.Simulations are conducted using Matlab/Simulink,and results show that the proposed method can effectively reduce the system’s total harmonic distortion rate,improve its anti-jamming capability,and realize the inverter’s stable operation with zero steady-state error.
关 键 词:并网逆变器 准比例谐振控制 双模重复控制 对角递归神经网络 谐波抑制
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200