智能环境下基于雾计算的推理节点优化分配研究  被引量:4

Study on Optimal Allocation of Inference Nodes for Fog Computing in Smart Environment

在线阅读下载全文

作  者:汪成亮[1] 黄心田 WANG Cheng-liang;HUANG Xin-tian(College of Computer Science,Chongqing University,Chongqing 400044,China)

机构地区:[1]重庆大学计算机学院

出  处:《电子学报》2020年第1期35-43,共9页Acta Electronica Sinica

基  金:国家自然科学基金(No.61672115);重庆市社会事业与民生保障科技创新专项(No.cstc2017shmsA30003)

摘  要:智能环境传统的规则推理机制中,网关内布置的推理机从各种传感器中获取推理所需数据并与规则库相匹配,承担整个推理工作.本文利用Rete算法将规则构建为推理网络,并结合雾计算的概念将Rete推理节点分配至环境内配置的智能节点中协同推理以减轻网关负载,由此推理节点的分配成为关键,分配不合理将导致资源利用不平衡及响应延迟.本文利用活动影响下规则触发的规律设计了活动聚类算法CoA(Clustering of Activities)对活动聚类后分别建立其推理网络,计算出智能节点之间的最短路径后将结果代入针对其层次延迟性而设计的分配算法AAoRN(Allocation Algorithm of Rete Inference Nodes),从而将推理节点最优分配至各个智能节点.理论分析和实验结果表明,本文机制在有效利用智能节点资源的同时降低了大致55%的延迟.Under traditional rule-based reasoning in smart environment,the inference engine deployed in gateway collects data from various sensors to match the rules,which undertakes whole reasoning work.In current research,we use Rete algorithm to construct an inference network by rules and then allocate the Rete inference nodes to smart nodes for collaborative reasoning based on fog computing,therefore,the allocation mechanism becomes crucial.In this paper,we utilize the regularity of rules triggered under the influence of activities to design an algorithm CoA(Clustering of Activity),which clusters activities and respectively constructs the inference networks,subsequently,we calculate the shortest path between smart nodes and substitute the results into AAoRN(Allocation Algorithm of Rete Inference Nodes),which is proposed to overcome hierarchical delay for optimally allocating each inference node.Theoretical analysis and experimental results show that the proposed mechanism efficiently utilizes the resources and has reduced the delay by about 55%.

关 键 词:智能环境 规则推理 RETE算法 雾计算 活动模式 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象