检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:荀燕琴 任国凤 田竹梅 吴莹莹 XUN Yanqin;REN Guofeng;TIAN Zhumei;WU Yingying(Department of Electronic Science,Xinzhou Normal University,Xinzhou 035000,China)
机构地区:[1]忻州师范学院电子系
出 处:《渭南师范学院学报》2020年第2期84-92,共9页Journal of Weinan Normal University
基 金:山西省高等学校科技创新项目:面向人脸表情识别的自驱动柔性可拉伸传感器研究(2019L0830);山西省高等学校教学改革创新项目:面向应用型人才培养的信号处理类课程混合式教学法的研究(J2019174);忻州师范学院科研项目:基于群体智能优化的机器人路径规划算法研究(2018KY22)
摘 要:随着各种电子设备的不断发展,产生了大量的数字化图像信息,而好的图像压缩技术在信息高速发展的今天就显得非常重要,寻求压缩比高且失真度低的压缩算法迫在眉睫。小波变换因其在时频域的局部优化特性被广泛运用。基于图像压缩及算法等基本理论,研究了嵌入式小波零树编码算法的基本理论和算法的实现过程,并通过MATLAB进行图例仿真,运用主观及客观的评价方法对仿真所得图像、数据进行分析,实验表明基于嵌入式零树编码算法可以实现图像的较高压缩比,且失真度较低,具有可行性和有效性。Nowadays,the demand for digital images is increasing.With the continuous development of various electronic devices,a large number of digital image information has been produced.But the development is far from the storage resources and transmission bandwidth provided by the current hardware technology,which affects the transmission and storage of image information.Therefore,good image compression technology has become very important in the rapid development of information today,and it is urgent to seek a compression algorithm with high compression ratio and low distortion.Wavelet transform is widely used for its local optimization in time-frequency domain.This paper first describes the background of image compression,research status and compression principles and other basic theories,and then introduces the image compression algorithms.Finally,the basic theory of embedded zero-tree wavelets encoding algorithm and the realization process of the algorithm are studied,and the legend simulation is carried out by MATLAB.The subjective and objective evaluation methods are used to analyze the simulated images and data.
分 类 号:TN919.81[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.60.81