基于LSTM的电力通信流量预测  被引量:4

在线阅读下载全文

作  者:黄国伦 诸葛丽强 杨乐 磨唯 

机构地区:[1]广西电网电力调度控制中心

出  处:《中国科技信息》2020年第3期105-108,共4页China Science and Technology Information

摘  要:随着电网逐步智能化,电力通信网承载的业务系统不断扩大升级,传统的网络流量模型己无法很好的拟合现有的网络流量,建立基于海量数据的电力通信网络流量预测模型具有重要意义。针对电力通信网网络业务流量所呈现的随机性和波动性特点,提出了一种基于长短时记忆(LSTM)和支持向量回归(SVR)的新型混合预测模型以提高短期网络流量预测的准确性。该模型首先采用变分模态分解(VMD)提取流量序列的固有模态,降低噪声的随机性影响,然后采用LSTM分别对各本征模态进行拟合,充分挖掘流量序列在时间上的分布特征,最后考虑流量影响因素,采用SVR拟合残差余量,并将所有子预测模型进行叠加整合。该模型使用实际数据为研究对象进行仿真预测,结果表明,该模型可有效提高模型的预测精度。

关 键 词:流量预测 长短时记忆 网络业务流 混合预测模型 网络流量 海量数据 电力通信 固有模态 

分 类 号:TN915.853[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象