大面积硅微条探测器在轨数据压缩算法的设计与实现  被引量:2

The Design and Implementation of On-orbit Data Compression Algorithm for Large Area Silicon Strip Detector

在线阅读下载全文

作  者:张永强 郭建华[1,2] 韦家驹[1,2] 张岩 ZHANG Yong-qiang;GUO Jian-hua;WEI Jia-ju;ZHANG Yan(Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210033;Key Laboratory of Dark Matter and Space Astronomy,Chinese Academy of Sciences,Nanjing 210033;University of Chinese Academy of Sciences,Beijing 100049)

机构地区:[1]中国科学院紫金山天文台,南京210033 [2]中国科学院暗物质与空间天文重点实验室,南京210033 [3]中国科学院大学,北京100049

出  处:《天文学报》2019年第6期36-48,共13页Acta Astronomica Sinica

基  金:国家自然科学基金项目(11503095、U1831206、11622327、11873020);中国科学院A类战略性先导科技专项(XDA15010200);核探测与核电子学国家重点实验室开放课题(SKLPDE-KF-201812)资助

摘  要:硅微条探测器具有位置分辨高、响应快、低噪声、低功耗等优点,广泛应用在各大加速器试验中,测量粒子径迹.新世纪以来,逐渐应用于空间探测领域.计划中的"悟空"2号暗物质粒子探测卫星的硅微条探测器将至数十万计,将产生海量的原始数据.如何实现探测器快速实时的数据压缩,是其需要解决的一大难题.立足于面向空间应用的硅微条探测器在轨实时压缩算法,算法采用FPGA (Field-programmable Gate Array)搭建流水线结构的方式实现,在提高系统集成度、节省逻辑资源的同时,批量数据处理时最高可将数据压缩率提升至38.4 M通道/s.算法结构具有通用性,设计思想和方案将为"悟空"2号的径迹探测器的研制提供参考.The silicon strip detector(SSD) has the advantages of high position resolution, fast response, low noise, and low power consumption. Since the new century,it has been widely used in space exploration to track incident particles. SSD for the new DArk Matter Particle Explorer-02(DAMPE-02), whose channel number will be up to five hundreds of thousands, and will generate massive raw data during the data acquisition, must have a fast and efficient data compression solution on orbit. In this paper, a real-time data compression algorithm is proposed, which is based on the FPGA(Field-programmable Gate Array). A pipeline structure in the FPGA is designed for the algorithm, to make the process more parallel and efficiently accelerate the running speed of the algorithm. And finally, the compression velocity, up to 38.4 million channel per second, is achieved. The design idea can provide a reference for the track detector of DAMPE-02.

关 键 词:仪器:探测器 暗物质 计算方法:数据压缩 

分 类 号:P111[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象