移动雾计算中基于强化学习的伪装攻击检测算法  被引量:5

Impersonation Attack Detection Algorithm Based on Reinforcement Learning in Mobile Fog Computing

在线阅读下载全文

作  者:于金亮 涂山山 孟远 YU Jinliang;TU Shanshan;MENG Yuan(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Trusted Computing,Beijing 100124,China)

机构地区:[1]北京工业大学信息学部,北京100124 [2]可信计算北京市重点实验室,北京100124

出  处:《计算机工程》2020年第1期38-44,共7页Computer Engineering

基  金:国家自然科学基金(61801008);国家重点研发计划(2018YFB0803600);北京市自然科学基金(L172049);北京市教委科研计划(KM201910005025)

摘  要:在移动雾计算中,雾节点与移动终端用户之间的通信容易受到伪装攻击,从而带来通信和数据传输的安全问题。基于移动雾环境下的物理层密钥生成策略,提出一种基于强化学习的伪装攻击检测算法。构建移动雾计算中的伪装攻击模型,在该模型下设计基于Q-学习算法的伪装攻击检测算法,实现在动态环境下对伪装攻击的检测,在此基础上,分析密钥生成策略在假设检验中的漏报率、误报率和平均错误率以检验算法性能。实验结果表明,该算法能够在动态环境中有效地防范伪装攻击,可使检测性能迅速收敛并达到稳定,且具有较低的平均检测错误率。In mobile fog computing,the communication between fog nodes and mobile end users is vulnerable to impersonation attacks,thus causing security issues in communication and data transmission.On the basis of the physical layer key generation strategy in mobile fog environment,this paper proposes an impersonation attack detection method based on reinforcement learning.The impersonation attack model in fog computing is constructed and the impersonation attack detection algorithm based on Q-learning algorithm is designed under this model,so as to detect impersonation attacks in a dynamic environment.On this basis,this paper analyzes the False Alarm Rate(FAR),Miss Detection Rate(MDR)and Average Error Rate(AER)of this strategy in the hypothesis testing,so as to judge the performance of the algorithm.Experimental results show that the proposed algorithm can effectively prevent impersonation attacks in a dynamic environment and its detection performance can converge rapidly and reach a stable state.Besides,the proposed algorithm has higher detection accuracy and lower average detection error rate.

关 键 词:Q-学习算法 物理层安全 伪装攻击 物理层密钥生成 假设检验 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象