检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘航 李扬 袁浩期 王俊影 LIU Hang;LI Yang;YUAN Haoqi;WANG Junying(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
机构地区:[1]广东工业大学机电工程学院
出 处:《计算机工程》2020年第1期302-308,共7页Computer Engineering
基 金:广东省科技计划项目(2013B011304008,2013B090600031);佛山市产学研专项资金项目(2012HC100195)
摘 要:基于深度学习的单声道语音分离需要计算时频掩蔽,但现有语音分离方法中时频掩蔽不可学习,也未将其封装到深度学习中进行优化,通常依赖于维纳滤波法进行后续处理。为此,提出一种基于生成对抗网络的语音信号分离方法。在语音生成阶段引入递归推导算法和稀疏编码器来改进时频掩蔽生成结果,并将生成的语音输入至判别器进行分类,以降低信号源之间的扰动。实验结果表明,与基于深度神经网络的语音信号分离方法相比,该方法的SDR、SIR分离指标分别提高6.2 dB和5.0 dB。The single-channel speech separation based on deep learning needs to calculate the time-frequency masking,which,however,cannot be learnt in the existing methods.Moreover,the time-frequency masking is not encapsulated in in-depth learning for optimization,so it relies on Wiener filtering for subsequent processing.Therefore,this paper proposes a speech signal separation method based on Generative Adversarial Networks(GAN).In the speech generation stage,the recursive derivation algorithm and sparse encoder are introduced to improve the time-frequency generation results.Then,the generated speach is eatered into the discriminator for classification,so as to reduce the disturbance between signal sources.The experimental results show that compared with other speech signal separation methods,such as the codec-based method and the recurrent neural network-based method,the SDR and SIR separation indexes of the proposed method increase by 6.2 dB and 5.0 dB respectively.
关 键 词:单声道语音分离 生成对抗网络 时频掩蔽 递归推导 稀疏编码器
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.64.93