机构地区:[1]Department of Electrical Engineering,National Institute of Technology,Rourkela 769008,India [2]School of Electrical Sciences,Indian Institute of Technology,Farmagudi,Goa 403401,India
出 处:《IEEE/CAA Journal of Automatica Sinica》2020年第1期106-117,共12页自动化学报(英文版)
摘 要:In this paper, a delay-dependent anti-windup compensator is designed for wide-area power systems to enhance the damping of inter-area low-frequency oscillations in the presence of time-varying delays and actuator saturation using an indirect approach. In this approach, first, a conventional wide-area damping controller is designed by using output feedback with regional pole placement approach without considering time-varying delays and actuator saturation. Then to mitigate the effect of both time-varying delays and actuator saturation, an add-on delay-dependent anti-windup compensator is designed. Based on generalized sector conditions, less conservative delay-dependent sufficient conditions are derived in the form of a linear matrix inequality(LMI) to guarantee the asymptotic stability of the closedloop system in the presence of time-varying delays and actuator saturation by using Lyapunov-Krasovskii functional and Jensen integral inequality. Based on sufficient conditions, the LMI-based optimization problem is formulated and solved to obtain the compensator gain which maximizes the estimation of the region of attraction and minimizes the upper bound of-gain. Nonlinear simulations are performed first using MATLAB/Simulink on a two-area four-machine power system to evaluate the performance of the proposed controller for two operating conditions, e.g.,3-phase to ground fault and generator 1 terminal voltage variation. Then the proposed controller is implemented in real-time on an OPAL-RT digital simulator. From the results obtained it is verified that the proposed controller provides sufficient damping to the inter-area oscillations in the presence of time-varying delays and actuator saturation and maximizes the estimation of the region of attraction.In this paper, a delay-dependent anti-windup compensator is designed for wide-area power systems to enhance the damping of inter-area low-frequency oscillations in the presence of time-varying delays and actuator saturation using an indirect approach. In this approach, first, a conventional wide-area damping controller is designed by using output feedback with regional pole placement approach without considering time-varying delays and actuator saturation. Then to mitigate the effect of both time-varying delays and actuator saturation, an add-on delay-dependent anti-windup compensator is designed. Based on generalized sector conditions, less conservative delay-dependent sufficient conditions are derived in the form of a linear matrix inequality(LMI) to guarantee the asymptotic stability of the closedloop system in the presence of time-varying delays and actuator saturation by using Lyapunov-Krasovskii functional and Jensen integral inequality. Based on sufficient conditions, the LMI-based optimization problem is formulated and solved to obtain the compensator gain which maximizes the estimation of the region of attraction and minimizes the upper bound of-gain. Nonlinear simulations are performed first using MATLAB/Simulink on a two-area four-machine power system to evaluate the performance of the proposed controller for two operating conditions, e.g.,3-phase to ground fault and generator 1 terminal voltage variation. Then the proposed controller is implemented in real-time on an OPAL-RT digital simulator. From the results obtained it is verified that the proposed controller provides sufficient damping to the inter-area oscillations in the presence of time-varying delays and actuator saturation and maximizes the estimation of the region of attraction.
关 键 词:Anti-windup compensator actuator saturation FACTS devices H∞ controller inter-area oscillations LMI time delay
分 类 号:TM761.12[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...