基于层级注意力模型的视频序列表情识别  被引量:3

Video Emotion Recognition Based on Hierarchical Attention Model

在线阅读下载全文

作  者:王晓华[1] 潘丽娟 彭穆子 胡敏[1] 金春花 任福继[1,3] Wang Xiaohua;Pan Lijuan;Peng Muzi;Hu Min;Jin Chunhua;Ren Fuji(School of Computer Science and Information Engineering,School of Artificial Intelligence,Hefei University of Technology,Hefei 230601;The Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu Province,Huaiyin Institute of Technology,Huai’an 223001;Graduate School of Advanced Technology&Science,University of Tokushima,Tokushima 7708502)

机构地区:[1]合肥工业大学计算机与信息学院人工智能学院,合肥230601 [2]淮阴工学院江苏省物联网移动互联技术工程实验室,淮安223001 [3]德岛大学先端技术科学教育部,德岛7708502

出  处:《计算机辅助设计与图形学学报》2020年第1期27-35,共9页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(61672202);国家自然科学基金重点项目(61432004);江苏省物联网移动互联技术工程实验室开放课题(JSWLW-2017-017)

摘  要:长短期记忆网络(LSTM)广泛应用于视频序列的人脸表情识别,针对单层LSTM表达能力有限,在解决复杂问题时其泛化能力易受制约的不足,提出一种层级注意力模型:使用堆叠LSTM学习时间序列数据的分层表示,利用自注意力机制构建差异化的层级关系,并通过构造惩罚项,进一步结合损失函数优化网络结构,提升网络性能.在CK+和MMI数据集上的实验结果表明,由于构建了良好的层次级别特征,时间序列上的每一步都从更感兴趣的特征层级上挑选信息,相较于普通的单层LSTM,层级注意力模型能够更加有效地表达视频序列的情感信息.LSTM network is widely used in facial expression recognition of video sequences.In view of the limited representation ability of single-layer LSTM and the limitation of its generalization ability when solving complex problems,a hierarchical attention model is proposed.Hierarchical representation of time series data is learned by stacking LSTM,self-attention mechanism is used to construct differentiated hierarchical relationships,and a penalty term is constructed and further combined with the loss function to optimize the network performance.Experiments on CK+and MMI datasets,demonstrate that due to the construction of good hierarchical features,each step in time series can select information from the more interesting feature hierarchy.Compared with ordinary single-layer LSTM,hierarchical attention model can express the emotional information of video sequences more effectively.

关 键 词:视频序列 人脸表情识别 堆叠长短期记忆网络 自注意力机制 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象