检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qi ZHANG Rui LI Tianguang CHU
机构地区:[1]School of Information Technology&Management,University of International Business&Economics,Beijing 100029,China [2]School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China [3]State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing 100871,China [4]Key Laboratory of Machine Perception(Ministry of Education),Peking University,Beijing 100871,China
出 处:《Science China(Information Sciences)》2020年第1期243-245,共3页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 61673027, 61503375);Fundamental Research Funds for the Central Universities (Grant Nos. CXTD10-05, 18QD18 in UIBE, DUT19LK18)
摘 要:Dear editor,Semi-supervised learning has obtained increasing interests in machine learning,because making use of both labeled and unlabeled training samples helps extracting discriminative features and meanwhile reduces the time-consuming and labor-intensive labeling burden.For extracting features upon multimodal(i.e.,data of the same class exhibits separate clustering)and mixmodal(i.e.,data from different classes has mixed modality)data[1],we have presented a semi-supervised graph embedding(SGE)model in[2]to incorporate the soft label information with hierarchical locality of data.Through the maximizing process upon the weighted between-class separability as well as the minimizing processes upon the localitypreserved within-class and scaled overall-class data distances respectively,the intrinsic characters of data with multimodal or mixmodal distributing properties can be well captured.
关 键 词:MODAL EMBEDDING EXTRACTING
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222