基于图像质量与频谱特性加权的光瞳结构优化  被引量:1

Optical Pupil Structure Optimization Based on Weighted Image Quality and Spectrum Characteristic

在线阅读下载全文

作  者:赵晋炜 于洵[1] 龚昌妹 姜旭[3] ZHAO Jin-wei;YU Xun;GONG Chang-mei;JIANG Xu(School of Optoelectronic Engineering,Xi’an Technological University,Xi’an 710021,China;Northwest Institutes of Advanced Technology,Xi’an Technological University,Xi’an 710021,China;Xi’an Institute of Applied Optics,Xi’an 710065,China)

机构地区:[1]西安工业大学光电工程学院,西安710021 [2]西安工业大学西北兵器工业研究院,西安710021 [3]西安应用光学研究所,西安710065

出  处:《自动化与仪表》2020年第2期41-46,共6页Automation & Instrumentation

基  金:陆军装备预研项目(30110222××××);西安市智能探视感知重点实验室项目(201805061ZD12CG45)

摘  要:为进一步优化光学合成孔径成像系统的光瞳结构,研究了3种典型光瞳结构下复原图像质量与调制传递函数之间的关系,提出基于图像质量与频谱特性加权的光瞳优化方法。该方法将复原图像质量评价因子与频谱分布特性因子的线性加权值,作为光瞳优化的目标函数,调整权重因子使合成孔径成像系统的性能在图像质量与分辨率之间达到平衡。仿真结果表明,对六孔径和九孔径光瞳结构优化后,复原图像对比度更高,人工痕迹更少,更利于在保证成像分辨率的同时获得更好的成像质量。In order to further optimize the pupil structure of the optical synthetic aperture imaging system,the relationship between the reconstructed image quality and the modulation transfer function of three typical pupil structures is studied,and a pupil structive optimization mathod based on image quality and spectral characteristics weighting is proposed. This method uses the linear weighted value of the restored image quality evaluation factor and the spectrum distribution characteristic factor as the objective function of the pupil optimization,and the performance of the synthetic aperture imaging system can be balanced between image quality and resolution by adjusting the weighting factor. The simulation results show that,after optimizing the pupil structure of six and nine apertures,the reconstructed image has higher contrast and fewer artificial traces,which is more conducive to ensuring the imaging resolution and obtaining better imaging quality.

关 键 词:成像系统 光学合成孔径 光瞳优化 成像质量 图像复原 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象