基于时间序列预测模型的并联电容器监测系统研究  被引量:12

Study on the Monitoring System of Shunt Capacitor Based on Time Series Prediction Model

在线阅读下载全文

作  者:王文瑞 严飞 鲁方林 马娜[1] 尹婷 王子建[3] WANG Wenrui;YAN Fei;LU Fanglin;MA Na;YIN Ting;WANG Zijian(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201120,China;China Electric Power Research Institute,Beijing 100192,China;Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University,Hebei Baoding 071003,China)

机构地区:[1]中国科学院上海高等研究院,上海201120 [2]中国电力科学研究院有限公司,北京100192 [3]华北电力大学河北省输变电设备安全防御重点实验室,河北保定071003

出  处:《电力电容器与无功补偿》2020年第1期8-13,24,共7页Power Capacitor & Reactive Power Compensation

基  金:国网科技项目(GYW17201600034)。

摘  要:并联电容器组是电力系统输配电环节中重要的无功补偿装置。本文针对并联电容器组的故障特点进行分析,研制出了并联电容器监测系统。结合并联电容器组的网络拓扑,对其多个支路进行电流波形采集,采用NAR神经网络建立时间序列预测模型,对获取的电流波形进行实时预测和分析,实现对并联电容器组中故障电容器的快速精确定位。通过试验和仿真,验证了所设计的并联电容器监测系统的正确性和有效性。为并联电容器的故障诊断和快速定位提供参考,大大提高了并联电容器的检修效率和智能化水平。Shunt capacitor bank is an important reactive power compensation device in the transmission and distribution of power systems.In this paper,the fault characteristics of the shunt capacitor bank are an⁃alyzed and the shunt capacitor monitoring system is developed.The current waveform acquisition of multi⁃ple branches is performed with combination of network topology of shunt capacitor bank,the time series pre⁃diction model is set up by the use of NAR neutral network so to perform real time prediction and analysis to the acquired current waveform and achieve fast and correct location of the faulty capacitor of shunt capaci⁃tor.The correctness and effectiveness of the designed shunt capacitor monitoring system are verified by test and simulation,which provides reference for the faulty diagnosis and fast location of shunt capacitor and greatly improves the maintenance efficiency and intelligent level of shunt capacitor.

关 键 词:时间序列 并联电容器 NAR神经网络 预测模型 监测系统 

分 类 号:TM53[电气工程—电器] O211.61[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象