检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王茹[1] 宋爽 贺佳 Wang Ru;Song Shuang;He Jia(College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
机构地区:[1]西安建筑科技大学信息与控制工程学院
出 处:《计算机测量与控制》2020年第2期197-201,205,共6页Computer Measurement &Control
基 金:国家自然科学基金(51278400)
摘 要:建筑能耗数据具有非平稳和非线性特征,单一预测模型很难对其进行精准预测,提出一种用于建筑能耗短期预测的新型混合模型;利用互补集合经验模态分解方法(CEEMD)将波动性较大的能耗数据分解为一组本征模态函数和一个残差序列;基于反向学习、差分进化算法并引入控制参数λ对鲸鱼优化算法(WOA)进行改进,有效解决算法早熟收敛与陷入局部最优等的问题,提出改进算法UWOA(upgraded whale optimization algorithm);利用UWOA优化Elman神经网络的权值与阈值,优化后的Elman神经网络对本征模态函数和残差序列进行预测并集成,得到能耗预测值;应用CEEMD-UWOA-Elman混合模型对上海某大型公共建筑能耗进行短期预测,结果显示混合模型获得很好的预测效果。Building energy consumption data has non-stationary and nonlinear characteristics.A single prediction model is difficult to predict accurately,and a new hybrid model for short-term prediction of building energy consumption is proposed.Complementary ensemble empirical mode decomposition(CEEMD)is utilized to decompose volatility energy data into a set of intrinsic mode functions and a residual sequence.Based on reverse learning,differential evolution algorithm and control parameters,the Whale Optimization Algorithm(WOA)is upgraded to effectively solve the problem of premature convergence and local optimality,and the upgraded whale optimization algorithm(UWOA)is proposed.UWOA is utilized to optimize the weights and thresholds of the Elman neural network.The optimized Elman neural network predicts and integrates the intrinsic mode functions and the residual sequence,and then the energy prediction is obtained.The CEEMD-UWOA-Elman hybrid model is used to predict the energy consumption of a large public building in Shanghai.The results show that the hybrid model has a good prediction effect.
关 键 词:改进的鲸鱼优化算法 互补集合经验模态分解 建筑能耗 预测
分 类 号:TP1830X09[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.223.53