检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗娟 蔡骋[1] LUO Juan;CAI Cheng(College of Information Engineering,University Northwest A&F,Yangling,Shaanxi 712100,China)
机构地区:[1]西北农林科技大学信息工程学院
出 处:《计算机工程与应用》2020年第5期160-165,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61202188)
摘 要:大多数关于自动植物识别的现有研究,集中于识别植物的单一器官,例如,花、叶或果实。使用单个器官的植物识别不够可靠,因为许多不同的植物却有着极其相似的器官。对于野外直接采集的图片,通常都有着复杂的背景,这也是目前的植物图像识别准确率不高的又一个原因。为了克服图像识别中的这两个难题,提出一种基于迁移学习的多线索植物识别方法,采用深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)通过迁移学习,训练花、果、叶和整株的单器官分类器,根据各个分类器预测的标签和得分进行多器官融合识别。在PlantCLEF2017数据集上证明了模型有效性,并且植物识别性能得到了极大的提升。Most existing research on automated plant identification has focused on identifying single organs of plants,such as flowers,leaves or fruits.Plant identification using a single organ is not reliable because many different plants have very similar organs.For pictures taken directly in the wild,there are usually complex backgrounds,which is another reason why the accuracy of plant image recognition is not high.In order to overcome these two problems in image recognition,this paper proposes a multi-cue plant recognition.Specifically,a Deep Convolutional Neural Network(DCNN)is used to learn the single organ classifiers of flowers,fruits,leaves,and whole plants by transfer learning,and finally multiorgan fusion recognition is done based on the labels and scores predicted by each classifier.This paper demonstrates the efficiency of the model on the PlantCLEF2017 dataset,and the plant recognition performance has been greatly improved.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.137.236