多线索植物种类识别  被引量:8

Multi-Cue Plant Species Identification

在线阅读下载全文

作  者:罗娟 蔡骋[1] LUO Juan;CAI Cheng(College of Information Engineering,University Northwest A&F,Yangling,Shaanxi 712100,China)

机构地区:[1]西北农林科技大学信息工程学院

出  处:《计算机工程与应用》2020年第5期160-165,共6页Computer Engineering and Applications

基  金:国家自然科学基金(No.61202188)

摘  要:大多数关于自动植物识别的现有研究,集中于识别植物的单一器官,例如,花、叶或果实。使用单个器官的植物识别不够可靠,因为许多不同的植物却有着极其相似的器官。对于野外直接采集的图片,通常都有着复杂的背景,这也是目前的植物图像识别准确率不高的又一个原因。为了克服图像识别中的这两个难题,提出一种基于迁移学习的多线索植物识别方法,采用深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)通过迁移学习,训练花、果、叶和整株的单器官分类器,根据各个分类器预测的标签和得分进行多器官融合识别。在PlantCLEF2017数据集上证明了模型有效性,并且植物识别性能得到了极大的提升。Most existing research on automated plant identification has focused on identifying single organs of plants,such as flowers,leaves or fruits.Plant identification using a single organ is not reliable because many different plants have very similar organs.For pictures taken directly in the wild,there are usually complex backgrounds,which is another reason why the accuracy of plant image recognition is not high.In order to overcome these two problems in image recognition,this paper proposes a multi-cue plant recognition.Specifically,a Deep Convolutional Neural Network(DCNN)is used to learn the single organ classifiers of flowers,fruits,leaves,and whole plants by transfer learning,and finally multiorgan fusion recognition is done based on the labels and scores predicted by each classifier.This paper demonstrates the efficiency of the model on the PlantCLEF2017 dataset,and the plant recognition performance has been greatly improved.

关 键 词:深度卷积神经网络 迁移学习 植物识别 多线索 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象