检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵彦明[1] 秦永元[1] ZHAO Yanming;QIN Yongyuan(School of Automation,Northwestern Polytechnical University,Xi’an 710129,China)
机构地区:[1]西北工业大学自动化学院
出 处:《压电与声光》2020年第1期137-141,共5页Piezoelectrics & Acoustooptics
基 金:航空科学基金资助项目(20165853041)
摘 要:针对捷联惯导系统(SINS)大失准角下滤波对准过程中非线性滤波器状态维数过大的问题,提出了一种基于模型分解的卡尔曼滤波/二阶扩展卡尔曼滤波(KF/EKF2)混合滤波方法,将基于欧拉平台误差角的非线性滤波模型分解为线性部分和非线性部分,分别采用线性KF滤波和非线性EKF2滤波处理,并且设计了混合滤波的滤波步骤。实验结果表明,KF/EKF2混合滤波算法在计算量、实时性及精度等方面优于最常用的无迹卡尔曼滤波(UKF)和EKF2滤波。Aiming at the problem of excessive state dimension of nonlinear filter in SINS filtering alignment process under large misalignment angles,the Kalman filtering/extended Kalman filtering(KF/EKF2)hybrid filtering method based on the model decomposition is proposed.The initial alignment model based on Euler platform error angle(EPEA)is decomposed into the linear part and nonlinear part,and is processed by the linear KF filter and nonlinear EKF2 filter respectively.The filtering process is designed to ensure the overall optimization of state variables.The experiment results show that the KF/EKF2 hybrid filtering algorithm is superior to the most commonly used unscented Kalman filtering(UKF)and EKF2 filtering in terms of computational complexity,real-time performance and accuracy.
关 键 词:大失准角 初始对准 卡尔曼滤波(KF) 二阶扩展卡尔曼滤波(EKF2) 混合滤波
分 类 号:TN249[电子电信—物理电子学] U666.12[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28