检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈曦[1] 刘恺[1] 王海霞[1] 王丽娜 李玉晴 李彬 CHEN Xi;LIU Kai;WANG Hai-xia;WANG Li-na;LI Yu-qing;LI Bin(School of Civil Engineering and Architecture,Henan University of Technology)
机构地区:[1]河南工业大学土木工程学院
出 处:《建筑热能通风空调》2019年第11期28-30,56,共4页Building Energy & Environment
基 金:国家自然科学基金(No.51708180);河南工业大学河南省省属高校基本科研业务费专项资金项目(2015QNJH05);河南工业大学“科教融合”项目
摘 要:有效预测近壁热源上方的颗粒物浓度,有助于利用热羽流贴附效应改善悬浮颗粒状况及减少有害沉积。为此,采用Grimm 1.109系列粉尘监测器对近壁热源上方的PM10、PM2.5和PM1质量浓度进行了24 h实验监测,并利用实验数据对既有颗粒物浓度预测模型进行修正,建立了密闭室内近壁热源上方颗粒物无因次浓度预测模型。研究结果表明所建立的模型能较好地预测密闭室内近壁热源上方PM10、PM2.5和PM1的无因次浓度。The valid prediction of the particle concentrations above near-wall heat sources contributes to controlling the suspended particles by thermal plumes and reducing the harmful particle deposition. Therefore, the mass concentrations of PM10、PM2.5 and PM1 above near-wall heat sources were measured continuously for 24 hours. The existing prediction model of the particle concentrations was amended by using the experimental data. Then the prediction model of the particle dimensionless concentrations above near-wall heat sources in sealed indoor environments was established. The results indicate that this model can well predict the dimensionless concentrations of PM10、PM2.5 and PM1 above near-wall heat sources in sealed indoor environments.
分 类 号:X513[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3