检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨丹 刘妍 钟正祥 田宫伟 樊文倩 王宇[3] 齐殿鹏 YANG Dan;LIU Yan;ZHONG Zhengxiang;TIAN Gongwei;FAN Wenqian;WANG Yu;QI Dianpeng(MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin Institu te of Technology,Harbin 150001,China;School of Materials Science and Engineering,Harbin University of Science and Technology,Harbin 150080,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China)
机构地区:[1]哈尔滨工业大学化工与化学学院,新能源转换与储存关键材料技术工业和信息化部重点实验室,哈尔滨150001 [2]哈尔滨理工大学材料科学与工程学院,哈尔滨150080 [3]郑州大学材料科学与工程学院,郑州450001
出 处:《材料导报》2020年第1期107-113,共7页Materials Reports
基 金:国家自然科学基金青年基金(51903068; 51903065; NSFC-NRF-5171101411);哈尔滨工业大学青年拔尖基金(AUGA5710050219)~~
摘 要:神经电极是实现人体和外部机器间信息融合的关键界面器件,是脑科学、生物电子医疗等前沿领域的技术核心。早期出现的神经电极以金属材料和半导体材料为主,这两类材料具备优越的导电性能,但其硬度远高于生物组织(相差四个数量级以上),生物兼容性差,易引起生物组织的排异反应,导致电极失效,并且在植入和使用过程中也容易对生物组织造成损害。近年来,人们尝试利用导电聚合物、水凝胶以及碳纳米管等柔性材料替代早期的金属、半导体等刚性材料,实现柔性生物电极的制备,以解决电极与生物组织间模量不匹配的问题。从而开发出低阻抗的电极-组织界面,最小化电极植入过程中对生物组织的创伤,保证植入电极长期稳定性的同时提高了其导电性,这对于精准的神经电刺激以及高质量记录神经电生理信号来说都至关重要。目前研究的神经电极多以柔性植入式为主,它将新兴材料、微加工技术与神经工程相融合,显示出优于其他神经电极的特性,在疼痛抑制、脑机接口、人体假肢等方面获得多项成果,在临床应用方面占有重要地位。本文归纳了植入式神经微电极的研究进展,主要从刚性神经微电极、神经电极柔性化、可拉伸柔性神经电极几个方面进行介绍。分析了刚性植入式神经电极存在的问题,并引出基于新型材料的柔性植入式神经电极,提出优化方案的同时对其前景进行展望,以期为制备性能优异且稳定的植入式神经电极提供参考。As a key interface device for information communication between human body and external machine,neural electrodes play an important role in brain science,biological electronic medicine and other frontier fields. Originally,metal and semiconductor were used as neural electrode materials,due to their good electrical conductivity. However their hardness are much higher than that of biological tissues( more than 4 orders of magnitude higher),which results in poor biocompatibility. This causes immune responses of biological tissues and electrodes failure. In addition,they are easy to cause damage to biological tissues during the implanting process. In recent years,flexible materials such as conductive polymers,hydrogels and carbon nanotubes are employed to produce flexible neural electrodes. This kind of electrode can reduce the mechanical mismatch across the electronics-tissue interface. Furthermore,the flexible neural electrodes also show advantages in decreasing the impedance between electrode-tissue interface,minimizing biological tissue injury during implantation,ensuring the long-term stability of electrodes and improving their electrical conductivity. All the features are essential for precisely neural stimulation and high quality physiological signal recording. At present,implanted flexible neural microelectrodes attractive many efforts,which requires the combination of new materials,micro-processing technique and neural engineering. The implanted flexible neural electrodes present better performance than other neural electrodes,and many achievements have been gotten in the field of pain suppression,brain-computer interface,human prosthesis and so on. Therefore,the implanted flexible neural electrodes play a more and more important role in clinical application.In this review,we summarize the research progress of implanted neural microelectrodes from three aspects: neural microelectrode,flexible neural electrode and stretchable neural electrode. Firstly,we analyze the problems with rigid implanted neural electr
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222