检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘长良[1,2] 曹威 王梓齐 LIU Changliang;CAO Wei;WANG Ziqi(School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学控制与计算机工程学院,河北保定071003 [2]华北电力大学新能源电力系统国家重点实验室,北京102206
出 处:《华北电力大学学报(自然科学版)》2020年第1期79-86,共8页Journal of North China Electric Power University:Natural Science Edition
基 金:北京市自然科学基金资助项目(4182061);中央高校基本科研业务费专项资金资助(2018ZD05)
摘 要:针对火电厂气体分析仪测量存在滞后和NO_X软测量不准确的问题,提出了一种基于改进互信息-主成分分析-核局部保持投影(MMI-PCA-KLPP)二次降维和模糊树模型(FT)的NO_X浓度软测量方法。首先对样本进行剔除离群点等预处理,再通过查阅文献大体确定模型的输入变量,并采用MMI方法对输入变量进行降维处理;针对MMI降维后依然有较多输入变量的问题,综合考虑了样本全局结构特性和局部结构特性,用PCA-KLPP方法对MMI降维后的变量二次降维;最后针对二次降维后的数据,基于模糊树算法建立了NO_X软测量模型。实验结果表明,模糊树模型精度高且泛化能力强,结合MMI-PCA-KLPP二次降维处理后,大大缩短了模型的训练时间且精度未出现较大程度的降低。Aiming at the lag and inaccurate NO_X soft measurement in gas analyzers in thermal power plants, this paper proposed a NO_X concentration soft measurement method based on improved mutual information, principal component analysis and core local hold projection(MMI-PCA-KLPP) secondary dimension reduction and fuzzy tree model(FT). Firstly, it preprocessed the samples such as outliers, determined the input variables of the model by consulting the literature and reduced the dimension of the input variables by MMI method. But there were still many input variables after dimension reduction. Thereof, it reduced the dimension of the MMI after dimension reduction by PCA-KLPP method considering the global structural characteristics and local structural characteristics of the sample. Finally, it constructed NO_X soft-measurement model by fuzzy tree algorithm based on the data after the second dimension reduction. The experimental results show that FT model possesses high precision and strong generalization. Combined with MMI-PCA-KLPP secondary dimension reduction, the training time of the model is greatly shortened and the accuracy is not obviously reduced.
关 键 词:NO_X软测量 MMI PCA KLPP 二次降维 模糊树模型
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.107.97