检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋畅 禹可[1] 吴晓非[1] SONG Chang;YU Ke;WU Xiao-fei(School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
机构地区:[1]北京邮电大学信息与通信工程学院
出 处:《计算机科学》2020年第2期251-255,共5页Computer Science
基 金:国家自然科学基金(61601046,61171098);中国111基地项目(B08004);欧盟FP7 IRSES项目(612212)~~
摘 要:社交媒体系统为人们提供了便利的共享、交流和协作平台。人们在享受社交媒体的开放性和便利性时,可能会发生许多恶意行为,例如欺凌、恐怖袭击计划和欺诈信息传播。因此,尽可能准确、及早地发现这些异常活动,以防止灾难和袭击,是非常重要的。近年来,随着在线社交网络(OSN)如Twitter,Facebook,Google+,LinkedIN等的成功,丰厚的利益资源使得它们成为了攻击者的目标。社交网络的开放性,使其特别容易受到异常账号攻击的威胁。现有基于图形的最先进分类模型大多使用首先为图的边分配权重,在加权图中迭代地传播节点的信誉分数,并使用最终的后验分数来对节点进行分类的方法。边权重的分配是其中一项重要的任务,此参数将直接影响检测结果的准确度。为此,文中针对社交媒体中异常账号的检测任务,分析了基于社交图全局结构的方法,通过在成对马尔可夫随机场模型中改进边权重的计算方法,使其能够在迭代过程中自适应优化,提出了准确度更高的GANG+LW,GANG+LOGW和GANG+PLOGW算法。这3种算法使用了不同的改进边权重的方法。实验证明,新提出的方法相对于基本的成对马尔可夫随机场模型,可取得更准确的异常账号检测结果,3种算法中GANG+PLOGW得到的结果最好。结果证明,此改进模型在检测社交网络中的异常账号时,能够更有效地解决问题。Social media systems provide a convenient platform for sharing,communication and collaboration.When people enjoy the openness and convenience of social media,there may be many malicious acts,such as bullying,terrorist attacks and fraudulent information dissemination.Therefore,it is very important to be able to detect these anomalous activities as accurately and early as possible to prevent disasters and attacks.The success of online social networks(OSN)in recent years,such as Twitter,Facebook,Google+,LinkedIn,has made them targests of attacker’s goal due to their rich profit resources.The openness of social networks makes them particularly vulnerable to unusual account attacks.Existing classification models mostly use method that first assign weights to the edges of the graph,iteratively propagate the reputation scores of the nodes in the weighted graph,and use the final posterior scores to classify the nodes.One of the important tasks is the settingof edge weight.This parameter will directly affect the accuracy of the test results.Based on the detection task of fake account in social media,this paper analyzed the global structure based on social graph,and improves the algorithm of edge weight in the paired Markov random field model,so that it can adaptively optimize in the iterative process.GANG+LW,GANG+LOGW,and GANG+PLOGW algorithms with higher accuracy were proposed.These three algorithms used three different methods to improve the algorithm of edge weight.Experiments show that the proposed method can obtain more accurate fake account detection results than the basic paired Markov random field model,in which GANG+PLOGW got the best results in the three algorithms.The result proves that this improved model can solve the problem more effectively when detecting fake accounts in social networks.
关 键 词:社交媒体 异常账号检测 马尔可夫随机场 SYBIL攻击
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63